

Local (Richter) magnitude

 $M_L = log_{10}A - log_{10}A_0(\Delta)$

- $M_L = local magnitude$
- A = max amp in mm
- $A_0 = \max \text{ amp at distance } \Delta$ for standard (zero) earthquake (one which has an amplitude of 0.001 mm at 100 km)

Local (Richter) magnitude

 $M_L = log_{10}A - log_{10}A_0(\Delta)$

In practice:

- 1. Measure amp
- 2. Calculate Δ
- 3. Look up $\log_{10}A_0(\Delta)$ in tables and subtract

Local (Richter) magnitude

 $M_L = log_{10}A - log_{10}A_0(\Delta)$

Other important scales:

- Surface-wave magnitude M_S
- Body-wave magnitude m_b
- Duration magnitude M_d

-		

Local (Richter) magnitude

 $M_{L} = \log_{10} A - \log_{10} A_{0}(\Delta)$

Magnitude is not a fundamental property!

It is not meaningful to talk about the "accuracy" of a magnitude

Empirical relationship with energy:

 $logE = 11.8 + 1.5M_{s}$

Question:

By what factor does the amount of energy released increase with each increase of one unity in M_S ?

Answer

$$10^{1.5} = 31.6$$

Intensity

Strength of ground shaking measured on Mercalli scale

I. People do not feel any Earth movement.
II. A few people might notice movement...
IV. Most people indoors feel movement...
VI. Everyone feels movement...
VIII. Drivers have trouble steering...
X. Most buildings & foundations destroyed...
XII. Objects thrown into the air...

Intensity, 1906 San Francisco earthquake

Seismic moment M_o

Earthquake size is given by the scalar seismic moment:

$$M_0 = \mu A \iota$$

 μ = shear modulus

A = fault area

u = average slip (dislocation)

$$1 \text{ Nm} = 10^7 \text{ dyne cm}$$

Seismic moment M_o

Calculation:

- 1. Using surface break & size of aftershock zone
- 2. Using spectral analysis

$M_w = 2/3 \log M_o - 6.0 \ (M_o \ in \ N \ m)$		
Empirical	relationships with energy:	Moment
	$\log E = 11.8 + 1.5 M_S$	magnitude
	$M_0 = \mu A \overline{u}$	(M _w),
	$\Delta \sigma = C \mu \frac{\overline{\mu}}{L}$	energy &
Thurs	$E_{S} = \frac{1}{2} \Delta \sigma \bar{u} A$	stress
Inus:	$E_s = \frac{\Delta\sigma}{2\mu} M_0$	

Stress & strain

Stress release in earthquakes is roughly constant:

$$\Delta \sigma = C \mu u/L$$

It is typically ~ 10 - 100 bars, which is much less than the strength of rock measured in laboratory experiments.

$Nr^{D} = 1$

- D = fractal dimension
- N = no. parts into which each line is split
- = ratio of similarit

Scale cannot be determined by examining a sample!

Question

For smaller and larger earthquakes, consider the relative amounts of energy released and their relative numbers.

Is it possible that a large earthquake could be prevented in a seismogenic area by inducing many smaller earthquakes?

Number per year	Energy released (10 ¹⁵ J/yr)
0 - 1	0 - 1000
12	100
110	30
1400	5
13,500	1
> 100,000	0.2
	Number per year 0 - 1 12 110 1400 13,500 > 100,000

-		

	Heart Attack Cancer Stroke Lung disease Pneumonia/Influenza Diabetes Motor vehicle accidents AIDS Suicide Liver disease/Cirrhosis Kidney disease Alzheimer's Homicide Falling Poison Drowning Fires Suffocation Bicycle accidents Severe Weather ¹ In-line skating ² Football ² Skateboards ² Earthquakes (1881-1983) ³	$\begin{array}{c} 733,834\\ 544,278\\ 160,431\\ 106,143\\ 82,579\\ 61,559\\ 43,300\\ 32,655\\ 30,862\\ 25,135\\ 24,391\\ 21,166\\ 20,738\\ 14,100\\ 10,400\\ 3,900\\ 3,200\\ 3,000\\ 695\\ 514\\ 25\\ 18\\ 10\\ 9\\ 9\\ 9\end{array}$	Causes of death in the US 1996
L	Eurinquines (1904-1998)		145

Fall-off in frequency at high magnitude

- 1. Distribution asymptotic?
 - Can be processed using Gumbel statistics
 - Results:
 - max m_b = 5.7 for UK
 max M_L = 9.2 for world
- 2. Distribution described by two different scalings with break point where whole crust ruptured

b varies in time & space

It is thought to be inversely proportional to stress

16

