JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 100, NO. B4, PAGES 6329-6338, APRIL 10, 1995

Horizontal surface deformation due to dike emplacement

in an elastic-gravitational layer overlying
a viscoelastic-gravitational half-space

M. A. Hofton

Department of Geological Sciences, University of Durham, Durham, England

J. B. Rundle

Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder

G. R. Foulger

Department of Geological Sciences, University of Durham, Durham, England

Abstract. We extend a technique previously used to model surface displacements
resulting from thrust faulting in an elastic-gravitational layer over a viscoelastic-
gravitational half-space to the case of dike emplacement. The method involves the
calculation of the Green’s functions for a dike point source contained in an elastic-
gravitational layer over an elastic-gravitational half-space. The correspondence
principle is then applied to introduce time dependence. The resultant Green’s
functions are integrated over the source region to obtain the near-field displacements.
Several example calculations are presented involving 90°, 60°, and 30° dipping dikes,
extending completely and partially through the elastic layer. We also illustrate
the time dependent deformation due to buried dikes. Dikes extending completely
through the elastic layer produce a larger-amplitude long-wavelength component
than those extending partially through the elastic layer. Inflexion points are seen in
the dike-normal horizontal deformation profiles when the base of the dike intersects

the top of the half-space, providing a means of differentiating between vertical
surface dikes extending completely and partially through the elastic layer. All
results show that the use of a viscoelastic half-space underlying an elastic layer
introduces a long-wavelength component into the deformation field that cannot be

predicted by elastic half-space models.

Introduction

An important goal of modern crustal deformation
studies is to understand the transient postevent ground
deformation sometimes seen following large earthquakes
and dike emplacement events. Stress relaxation in
a nonelastic region situated below the surface elastic
zone is one possible mechanism for transient strain
[e.g., Thatcher and Rundle, 1979; Thaicher et al., 1980;
Cohen, 1984]. A second possible explanation is contin-
ued slip at depth on the fault or dike plane.

Elastic models involving dislocation sources in a hom-
ogeneous half-space [e.g., Chinnery, 1961; Okada, 1985]
or in a layered half-space [e.g., Jovanovich et al., 1974]
cannot explain time dependent transient behavior. One
method of introducing time dependence is by including
a viscoelastic half-space. Nur and Mavko [1974], Rundle
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and Jackson [1977), Spence and Turcotte [1979], Run-
dle [1978, 1980], Savage and Prescott [1978], Matsu ura
and Tanimoto [1980], and others have studied the time
dependent behavior with thrust or strike-slip sources.
Authors dealing with dilatational sources include Roth
[1993], who found a solution for an opening crack con-
tained in a layered elastic half-space that could be ex-
tended to simulate a system of dikes, and Hek: et al.
[1993], who proposed a viscous diffusion model for post-
diking stress relaxation at divergent plate boundaries.
We extend the work of Rundle [1980, 1981] to include
the case of dike opening in an elastic layer overlying a
viscoelastic half-space, the application of which will be
especially useful in predicting transient deformation in
areas of active tectonic rifting and at mid-ocean ridges.
We limit the choice of materials in the viscoelastic re-
gion to those whose rheological properties have linear
constitutive laws since even though the deformations
are large, the strains are small as these depend on the
small differences between time dependent displacements
and the steady plate velocity. Because the strains are
small, we can use a linear model; the nonlinear terms
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will all be negligible compared to the magnitude of the
linear terms. A Maxwell rheology is also assumed which
implies the inelastic region behaves as an elastic solid
over short time periods and as a Newtonian fluid over
long timescales. This is considered by the authors to
be the most appropriate linear rheology for long-term
deformation processes within the Earth.

We include gravitational effects in our calculations.
For deformation at the surface of an elastic half-space,
gravitational effects become significant over wavelen-
gths greater than 1000 km [Rundle, 1980] but have
little relevance to deformation near the source region.
In viscoelastic structures, stresses in some regions of
the Earth decrease as flow occurs: the initial elastic
stresses induce flow in the medium, generating a change
in the displacements and gravitational stresses as a re-
sult. Equilibrium is eventually attained between the
gravitational and elastic stresses in the flowing region.
However over short time intervals gravitational effects
are small [Rundle, 1981], and the inclusion of gravita-
tional effects is significant only when the event is as-
sumed to reoccur, producing a cyclic distribution of
events.

In this paper, surface displacements following dike
emplacement are modeled using Green’s functions. The
solutions for the elastic-gravitational problem are first
computed. Then the correspondence principle which
relates the elastic-gravitational solution to the Laplace-
transformed viscoelastic-gravitational solution is app-
lied. Finally, the resultant Green’s functions are inte-
grated over the finite source region to obtain the time
dependent, near-field displacements. A brief review of
the method developed by Rundle [1980, 1981] is given
here.

Solution to the Infinite Space Problem

Rundle [1981] found that for displacements resulting
from a dip-slip event in a layered elastic-gravitational
medium, self-gravitation effects arising from the non-
zero value of Gy, the gravitational constant, were gen-
erally much smaller than gravitational effects relating to
the surface acceleration, g. Making use of this, Rundle
[1981] considered the governing equations [Love, 1911]

V2 + 1_ @ ng(u »)
—’;—"v p;gﬂv i=0, (1)

V2¢ = —47rp0G0V . ’[I, (2)

where @ is the perturbed displacement vector in the
deformed cylindrical coordinate system (7,8, z), ¢ is the
gravitational potential in this coordinate system, €., €y,
and €, are the unit vectors, ¢ is Poisson’s ratio, pg is the
density and p is the rigidity. As z — oo, all perturbed
quantities are presumed to tend to zero, so setting Gy =
0 implies ¢ 1s constant. In this case we may write
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Using the vector base
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where J,,(kr) are cylindrical Bessel functions, z = V-1,
and k corresponds to the wave number in dynamical
problems [cf. Ben Menahem and Singh, 1968], we can
expand 7 in terms of equations (4) to (6) as

i:l

i/wkde (2) Py + Up(2) B + Vin(2)Cia].
= (7)

The solution given by V;,(z) is not considered as it is
found to be identical to the solution in the nongravitat-
ing case. Uy, (z) and Wy, (2) are given by Rundle [1981]
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n = ﬂ;;ﬂ:pg, (13)

p = Z—O. (14)

The gravitational wave
az(k) =0, is defined as

ky = /<. (15)

For k < kg, az is purely imaginary, and for k > kg, as
1s real.

number k;, found by setting

Solution to the Layered Half-Space
Problem

Rundle [1980] used a polar coordinate system (r, 8, z)
with unit vectors €,,€y, and €, and with the z axis
oriented down into the medium at the surface of a lay-
ered, elastic-gravitational half-space. The elastic mod-
uli in the nth layer are denoted by A, and pu,, and the
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density by p,. The solution in the nth layer is given by

[e)
=Z/0 kdk @ (16)
m=0

where 4, is given by
Ty = 2 P+ U B + 2C, (17)
and the kernel functions z7},, ¥, and 2, are
et = —e FFAD 4 PP AL L 4 pTe B,
+pTe®? Bt + kpye~ D,
+kpYe®* DF,,,, (18)
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Here +a; and %a, are defined by equations (9) and (10).
The same formulation is applied to the stresses, across
the layer boundaries to obtain similar expressions for
the normal tractions across a plane.

As can be seen from equations (18) to (20), the prob-
lem can be divided into two separate parts, the “R”
problem (that includes the z}}, and y?, terms) and the
“L” problem (that includes the z}}, terms). The so-
lutions to these problems are given by Rundle [1980,
(equations 88-96)].

Source Functions

The source functions [D,,] for the six elementary dis-
placement dislocation sources have been derived by Ben
Menahem and Singh [1968]. In the notation of Singh
[1970], (jk) refers both to the direction of the force sys-
tem and the normal to the plane across which it is ap-
plied. For a dike inclined at an angle 1 to the horizontal

(k) =

with each component given by

(3,3) cos? ¢ + (2,2)sin® ¢ — (2,3)sin 24, (21)

(k) = (2,2): (Do)1 =2y (36 = 1)/(6 + 1),
(Do)a = py (76 = 1)/(6 + 1),
(Da)4 = pv,
(D5)2 = —2u7i, (22)
(jk) = (3,3): (Do)1 = 27,
(k) =(2,3): (D1)2 = =271,
(D) = —27.

Here vy = AUdX /4w, where AU is the relative displace-
ment across the crack, dX is an element of area on the
crack, and 6=1/(3-40).

Hence we have three different source function contri-
butions to the diking problem, one describing opening
in the vertical direction (m = 0), a second describing
opening in the horizontal direction (m = 2) and a shear-
ing component (m = 1). Using equations (16) and (17)
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and summing these three contributions, the displace-
ment at the surface may be written as

= / k dk{ [x5(33)(0)130 + y},(33)(0)§0] cos?
0
+ [ma(O)P“o +A(0)By + 22(0) P + 2 (0) B
+z§(0)c“2] sin? - [xi(O)Pl + i (0)B,

+z}(0)d} sin 2¢}. (23)

The superscript (33) distinguishes the kernel functions
of the (jk) = (3,3) component from the (jk) = (2, 2)

component. Substituting equations (4) to (6) for P,

Bm and Cm, replacing ¢'™® and ie'™® by cosmé and
— sin m#, respectively, to obtain the real part, and split-
ting the displacement vector into its three components,
we obtain
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(26)

Equations (24) to (26) give the solution to the elastic-
gravitational problem of a point nucleus of dilation in an
elastic-gravitational layer over an elastic-gravitational
half-space.

Introduction of Viscoelasticity

As the first step, the correspondence principle of lin-
ear viscoelasticity is applied [Lee, 1955]. This requires
that the elastic quantities A and p in each component of
the elastic solution be replaced by their Laplace trans-
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formed quantities sA(s) and sfi(s) to obtain i(s) where
the bar signifies the Laplace-transformed quantity and
s is the parameter conjugate to time. Then u(s) is
inverted to give u,(t), the solution to the viscoelastic
problem. The technique used to perform the inversion
involves the Prony series where the function u, () is ap-
proximated by a function uX(t) composed of a series of
decaying exponentials. Following Schapery [1961] and
Cost [1964] we set

N
w ()2 S Am(l—eTm) = wi(t),  (27)
ij

~

where = means “approximately equal to in the least
squares sense” and where {r;;} is a set of N relaxation
times. In this problem we set

{7i;} = {0.574, 74,574,107, 507,, 1007, },

where 7,, the characteristic relaxation time, is defined
by 7, = 2n/pp in which 7 is the viscosity of the Maxwell
fluid and pj is the elastic modulus of the half-space.
The A; are then a set of unknown constants to be de-
termined. This approximation method has the advan-
tage of smooth time domain results in the time interval
required and involves as few function evaluations as pos-
sible. The error obtained using the numerical method
is thus minimized. Then u}(t) can be integrated over
the source region to obtain the required solution.

Results

Post-diking horizontal deformation is predicted over
timescales of 0 to 507,. Effects due to the inclusion of
gravity and from the variation of the fault parameters
pr, D, W, and ¢ (Figure 1) are studied. Note that the
figures (Figures 2 to 4, 6, 8 to 10) illustrating postdik-
ing displacements where gravitational effects are not in-
cluded show nondimensional horizontal motion perpen-
dicular to the dike plane, i.e., in the y direction, over

Half space

A d

Figure 1. Geometry and coordinate system for a rect-
angular, dipping dike in an elastic-gravitational layer
over a viscoelastic-gravitational half-space. H is the
thickness of the layer, D is the depth of the dike, 2L is
the along strike length, W is the downdip width, and ¥
is the dip.
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an area scaled in terms of H. The figures (Figures 5
and 7) which include gravitational effects do not have
their horizontal motion and lengths scaled in a similar
manner. In the gravitational problem several indepen-
dent length scales now exist: H, the layer thickness,
and kgL and kf , the gravitational wave numbers for the
layer and half-space. A nondimensionalizing of the ker-
nel functions for the gravitational case results in a ratio
of gravitational effects to elasticity effects, e.g., pgH /1
[Rundle, 1982].

The case of a vertical dike extending completely th-
rough the elastic layer (W/H = 1) is shown in Fig-
ure 2. The predicted codiking deformation is large close
to the source and decreases as the distance from the
source increases. The postdiking response behaves in
the opposite sense with little deformation predicted in
the near-source region and substantial deformation at
distances several dike widths from the source. Rebound
of the nonelastic region in response to the rapid outward
movement from the diking leads to the formation of an
inflexion in the displacement field close to the source.
The amplitude of the postdiking deformation field is in-
creased as a result of increasing yj, (compare Figures 2
and 3). This also leads to the formation of a more
pronounced peak in the field several dike widths away
from the source. In addition, increasing pp increases
the magnitude of the completion time of the postdik-
ing deformation. Viscosity is directly proportional to
rigidity; hence increasing pj implies that the viscoelas-
tic region has become less “fluid” and responds more
slowly to postdiking stress changes but with a larger
magnitude response. Decreasing the downdip width of
the dike such that it extends halfway through the elas-
tic layer from the surface produces minimal differences
in the codiking deformation field. (compare Figures 3
and 4). However, the postdiking deformation field now
has a more pronounced peak related to the thickness
of the elastic layer, and it has no inflexion in the near-
source region. The presence of this inflexion in the dis-
placement field is a direct consequence of the base of
the dike touching the top of the half-space. Decreas-
ing the downdip width of the surface dike by a small
fraction removes the presence of the inflexion from the
postdiking deformation fields. Hence the case of a dike
extending completely through the elastic layer can be
distinguished from the case of a surface dike which ex-
tends partially through the elastic layer by inspection
of the postdiking deformation fields. The inclusion of
gravitational effects produces no significant differences
in the horizontal deformation field over all time inter-
vals for the dike of downdip width H, but decreasing the
downdip width of the dike results in a significant atten-
uation of the long time interval postdiking deformation
fields (compare Figures 4 and 5).

Burying the dike has a profound effect on the pre-
dicted postdiking deformation field. The codiking re-
sponse has a smaller amplitude than that predicted us-
ing the surface dike sources, with the maximum dis-
placement occurring at a greater distance from the
source. The inflexion seen in the near-source region
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Figure 2. Nondimensional surface horizontal deformation against distance normal to a dike
extending completely through the elastic layer. Model parameters are H = 30 km, 2L = 20H/3,
pr=pn =3.0g/em3 p = X = Xy = 3x101° Pa, pp = 3x10° Pa, D/H = 0, W/H = 1, and
¥ = 90°. The codiking response is calculated using the formulae of Okada [1985] for a dike in an
elastic half-space where u = A = 3x10!° Pa. The shaded area represents the elastic-gravitational
layer, the horizontal dashed line is the layer half-space boundary, and the heavy solid line shows
the dike geometry. The solid curve is the initial elastic (codiking) response, and the dashed
curves represent the deformation due to viscoelastic stress relaxation after 27,, 57,, and 507,.
Each displacement profile has been evaluated at the midpoint of the fault plane.

l 1 1 L L . — il l 1 1 L

n,=3x101°Pa
D/H=0
W/H=1
y=90°

NON-GRAVITATIONAL

| ARLLARARA ALLLLALAL) RALRLLLEL LA LA L LRARAL |l‘llII‘II|IIIIIIIIIH!I|II|llllll'lllllllllllllnlllll

y/H

4 8 12 16

Figure 3. Same as Figure 2 except puj = 3x10° Pa.
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Figure 4. Same as Figure 2 except D/H = 0, W/H = 0.5, and pj, = 3x10'° Pa.

of the postdiking deformation field (Figure 6) is of a
larger amplitude and covers a greater area than that
predicted for a surface dike of twice the downdip width.
The inclusion of gravitational effects results in an at-
tenuation of the deformation field (compare Figures 6
and 7); however, when compared to the surface diking
case these effects become apparent over a much shorter
timescale. This difference in time scales is due to the

closeness of the dike end to the halfspace. The stresses
die off from the fault ends like 1/7, so for the case of
a buried dike extending to the base of the elastic layer
the halfspace will experience shorter wavelength stresses
and faster stress relaxation than if the dike extended
from the surface to the midpoint of the elastic layer
[Rundle, 1982]. '

The dominant effect of altering the dip of the dike
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ceeaay e i
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Depth (km)

I‘IT‘II'lir‘l‘

-360 -240

LS T l T T 1

-120 0

y (km)

Figure 5. Same as Figure 4 except gravitational effects are included in the model. Surface
deformation is now in centimeters per meter of opening.
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Figure 6. Same as Figure 2 except D/H = 0.5, W/H = 0.5, and p, = 3x10'° Pa.

is the formation of an asymmetrical deformation field
in both the codiking and postdiking response (compare
Figures 4 and 8 and Figures 6 and 9). Other features
are similar to those observed in the corresponding ver-
tical dike cases with the asymmetric features being in-
troduced by the dip of the dike. Increasing the dip of
the dike increases the scale of the asymmetrical effect
(compare Figures 8 and 10). The inclusion of gravita-
tional effects into these cases results in the same effects
as those observed for the vertical dike case. That is, for
the surface dike no apparent differences are observed
until longer time periods, and for the buried dike these
differences occur within shorter timescales.

Regions of uplift and subsidence can be associated
with areal strain compression and expansion patterns
[Bilham and King, 1989]. The horizontal strain field is
given by the derivative of the horizontal deformation
curves; hence regions of uplift and subsidence can be
inferred. A dike extending completely through the elas-
tic layer produces uplift above the dyke, no appreciable
motion either side of the dike, i.e., in the flank zones,
and uplift further away. No appreciable motion is pre-
dicted in the far field. This pattern is repeated for a
buried dike extending to the base of the elastic layer,
except the flank zones now undergo subsidence. A sur-
face dike extending halfway through the layer produces

uplift of the flank zones with subsidence elsewhere and
no appreciable motion in the far field.

Summary and Discussion

A previous method is extended in order to calculate
the horizontal postdiking surface displacements as a re-
sult of a dike emplacement in an elastic layer above a
viscoelastic half-space. The effects of gravity can be
included in both the layer and the half-space but are
found to produce minimal differences in the displace-
ment fields until longer time intervals are considered.
In addition, results indicate that it is possible to de-
termine whether a dike extends completely or partially
through the elastic layer by an inspection of the post-
diking deformation fields.

The boundary conditions contained in the present
version of the model, however, do not account for data
that are affected by repeated events. The method ap-
propriate to these circumstances is outlined by Savage
and Prescott [1978], and the application of this will
form a particularly valuable tool for interpreting ob-
served geodetic horizontal surface deformation in ar-
eas of active tectonic rifting and for forward modeling
at mid-ocean ridges. One region in which the model
is currently applicable is in northeast Iceland where a

L 1 L l 1 1 L ' 1 1 1 ' L L 5 1 L 1 , S S e J L L L , L 1 1
20 = =
i p,=3x101'Pa 3
2 151 Phoos GRAVITATIONAL -
e 193  w/H=05 SRR 3 _
g/ S 3 v =90° e T E R E §
E -10 3 a——E— 30 5
> s ---t=55,
20 3 — —t=50r7, B
T T T l L T T I T T T l T T T T T 1 [ T T T r T T T ‘ T T T
-480 -360 -240 -120 0 120 240 360 480
y (km)

Figure 7. Same as Figure 6 except gravitational effects are included in the model. Surface
deformation is now in centimeters per meter of opening,.
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Figure 8. Same as Figure 2 except ¢ = 60°, D/H =0, W/H = 0.5, and pj, = 3x10'° Pa.

major rifting episode commenced in 1975. In the fol-
lowing decade up to 8 m of crustal widening occurred
along an 80 km-long-section of the accretionary plate
boundary [Bjérnsson, 1985]. Repeated geodetic survey-
ing results in this area using Global Positioning System
(GPS) satellite surveying [Hek: et al., 1993; Jahn et al.,
1994] have revealed a horizontal deformation field that
shows a clear postdiking transient signal that may be
attributable to viscoelastic asthenospheric relaxation.
Furthermore, this model predicts the presence of a
long-wavelength component in the postdiking deforma-
tion field following a single event, a result also obtain-

able by modeling continued diking at depth in an elastic
half-space. One possible distinction between these two
models lies in the analysis of the distribution of observed
deformation with time. Here we demonstrate a nonlin-
ear spatial variation of displacement with time. For a
similar distribution of displacements to occur using the
continued diking at depth in an elastic half-space hy-
pothesis, a dike continually evolving in depth, downdip
width, and length would have to be incorporated into
the model. Data sets of a sufficiently high quality, for
example, the northeast Iceland GPS data set [Heki et
al., 1993; Jahn et al., 1994], are now becoming avail-

i | | | | 1 | | I | | ! "
60 3

p,=3x101Pa
50 3 D/H=05 NON-GRAVITATIONAL £

W/H=05
03 y=60° :
20 4 E_

uy/U x 100
=)

Depth

y/H
Figure 9. Same as Figure 2 except ¢ = 60°, D/H = 0.5, W/H = 0.5, and pp = 3x10'° Pa.
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— 20 £
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---- t=51, 3
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6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

y/H
Figure 10. Same as Figure 2 except ¢ = 30°, D/H =0, W/H = 0.5, and p, = 3x101° Pa.

able, enabling the possibility of distinguishing between
these two methods. If a difference can be detected, then
this will lead to a better understanding of the physical
processes responsible for plate boundary processes.
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