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Earthquake Mechanisms from Linear-Programming Inversion 

of Seismic-Wave Amplitude Ratios 

by Bruce R. Julian and G. R. Foulger 

Abstract The amplitudes of radiated seismic waves contain far more information 
about earthquake source mechanisms than do first-motion polarities, but amplitudes 
are severely distorted by the effects of heterogeneity in the Earth. This distortion can 
be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic 
phases, rather than simple amplitudes, but existing methods for inverting amplitude 
ratios are severely nonlinear and require computationally intensive searching methods 
to ensure that solutions are globally optimal. Searching methods are particularly 
costly if general (moment tensor) mechanisms are allowed. Efficient linear-program- 
ming methods, which do not suffer from these problems, have previously been ap- 
plied to inverting polarities and wave amplitudes. We extend these methods to am- 
plitude ratios, in which formulation on inequality constraint for an amplitude ratio 
takes the same mathematical form as a polarity observation. Three-component digital 
data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern 
Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unu- 
sually well distributed on the focal sphere, cannot distinguish between diverse mech- 
anisms, including a double couple. Amplitude ratios, on the other hand, clearly rule 
out the double-couple solution and require a large explosive isotropic component. 

Introduction 

It is common practice to determine earthquake mecha- 
nisms from the polarities of the first motions of P phases. 
Polarity data alone often provide adequate resolution if 
mechanisms are constrained to be double couples (fault- 
plane solutions), but it is now clear that such a constraint is 
not always justified. Some earthquakes, especially in vol- 
canic and geothermal areas, have non-double-couple mech- 
anisms that require the more general moment-tensor repre- 
sentation (Foulger, 1988; Julian et al., 1996a; Miller et al., 
1996). 

Resolving general moment-tensor earthquake mecha- 
nisms using polarity data alone is surprisingly difficult. Even 
when seismometers are distributed well, there usually exist 
a wide range of mechanisms that are consistent with ob- 
served polarities. To overcome this difficulty, it is necessary 
to supplement first motions, for example, with amplitude 
data. The use of amplitudes is hindered, however, by our 
ignorance about the structure of the Earth. Focusing and de- 
focusing effects distort observed amplitudes in a way that is 
extremely sensitive to structural details. Realistic three-di- 
mensional Earth models are seldom available, and accurately 
computing seismic-wave propagation in them is not yet fea- 
sible, so analysis usually must be based on simplifications 
such as one-dimensional approximations of Earth structure. 

A simple way to reduce the bias caused by focusing and 

defocusing is to use as data the ratios of amplitudes of seis- 
mic phases that follow similar paths, such as P:SV, P:SH, or 
SH:SV. If the ratio of the speeds of the waves involved is 
constant in the Earth, which usually is a good approximation, 
then in the geometrical-optics limit such amplitude ratios are 
unaffected by wave propagation. Amplitude ratios also have 
the advantage of being insensitive to instrument calibration. 

Several workers have devised methods for using ampli- 
tude ratios to determine earthquake focal mechanisms. The 
algorithm of Pearce (1977, 1980) determines mechanisms 
constrained to be double couples from the ratios of ampli- 
tudes of teleseismic P and surface-reflected (pP or sP) 
phases, but because these have different ray paths in the 
source region, the ratios are still affected by structural het- 
erogeneity there. Kisslinger et al. (1981) presented a method 
for local earthquakes, which uses ratios of the amplitudes of 
P and SV phases, both measured on commonly available 
vertical-component seismograms. Kisslinger's method also 
constrains the mechanisms to be double couples. 

Both of these methods determine focal mechanisms by 
systematically searching through multi-dimensional param- 
eter spaces. For double-couple mechanisms, the parameter 
space has three dimensions, and for general moment-tensor 
mechanisms, it has five. Computafionally expensive search- 
ing methods are required because theoretical amplitudes and 

972 



Earthquake Mechanisms from Linear-Programming Inversion of Seismic-Wave Amplitude Ratios 973 

amplitude ratios are strongly nonlinear functions of the fault 
parameters. Methods that use linearized approximations to 
iteratively perturb an initial estimate of the solution, which 
are often used in nonlinear inverse problems, perform poorly 
here because they find only locally optimum solutions and 
cannot detect multiple solutions, which commonly exist and 
may be radically different. 

Nonlinearity and nonuniqueness are not inherent to the 
focal-mechanism problem, however, but are by-products of 
the double-couple source constraint. In terms of the moment- 
tensor source representation, the relation between source pa- 
rameters and theoretical wave amplitudes is linear, and in- 
version methods based on this property are now common 
(for example, Stump and Johnson, 1977; Dziewonski et al., 
1981; Sipkin, 1987). As with any strictly linear inverse prob- 
lem, conventional least-squares methods always produce a 
single solution. 

Using certain types of data, such as polarities, also in- 
troduces nonlinearity into inverse problems. This is the rea- 
son, for example, that searching methods are still needed in 
an extension of the algorithm of Pearce (1977, 1980), which 
eliminates the a priori double-couple assumption and allows 
general moment-tensor sources (Pearce and Rogers, 1989). 
Nonlinear problems of this kind can be solved efficiently by 
applying linear-programming methods, which can treat in- 
equalities, to the moment-tensor representation (Julian, 
1978, 1986; Fitch et al., 1980). Linear programming meth- 
ods can also invert amplitude data expressed in terms of 
inequality constraints (Julian, 1986), can invert combined 
polarity and amplitude data robustly using the L 1 norm (sum 
of the absolute values) of the residuals as a measure of good- 
ness of fit (Fitch et al., 1980), and can invert amplitudes of 
waves that have unknown polarities (Julian, 1986). Linear- 
programming problems cannot have distinct locally optimal 
solutions. The set of moment tensors consistent with a set 
of polarity and/or amplitude data is connected and convex, 
so any weighted average of consistent solutions is itself a 
consistent solution. Linear-programming methods can effi- 
ciently delineate this solution set by finding those members 
that are extreme in terms of physically motivated linear ob- 
jective functions. 

In this article, we extend the linear-programming inver- 
sion method of Julian (1978, 1986) to treat amplitude-ratio 
data. This extension is simple; an amplitude ratio turns out 
to be equivalent to a polarity, but with a modified Green's 
function. The extended method can invert any combination 
of polarity, amplitude, and amplitude-ratio data and is much 
more efficient than multi-dimensional searching. 

Method 

Polarities and Amplitudes 

Arrange the six independent components of the 3 × 3 
symmetric moment tensor in a column vector, m. The am- 

plitude of a seismic wave excited by a point source with 
moment tensor in can then be expressed as the dot product 

u = grm, (1) 

where g is a column six-vector of Green's functions for the 
particular wave type and source and observer locations, and 
the superscript symbol T indicates transposition. The com- 
ponents of g corresponding to P, SV, and SH body waves in 
an infinite homogeneous isotropic elastic medium are given 
by Julian (1986). In the linear-programming method, obser- 
vations are expressed as inequalities. For example, a polarity 
observation is expressed as either 

grm =< 0 or grln => 0, (2) 

and an amplitude observation is expressed as the pair of in- 
equalities, 

grin --< ama x and grm _--> amax, (3) 

for appropriate choices of the bounding values ama x and aai n. 
By reversing the signs of amplitude bounds and Green's 
functions, we can express all these types of inequalities in 
the general form 

g r m = a .  (4) 

We wish to find a vector m consistent with a system of linear 
inequalities of the form (4). This is a linear-programming 
problem. 

Amplitude Ratios 

The approach described above is easily extended to han- 
dle amplitude ratios, by expressing each one as a pair of 
inequalities involving bounding values main and rma~: 

b/(1) ~- rmaxU(2); U (1) => rminU (2~. (5) 

In terms of the Green's functions g(a) and g(2} for the two 
wave types involved, these inequalities are 

g°)rm =< rmaxg(2)Tm and gO~rm => rming(2 )Tm.  (6) 

Inequalities of this form apply only to amplitudes of known 
sign (i.e., to waves of known polarity); the formulation for 
unsigned (absolute value) amplitude observations is given in 
the Appendix. The pair of inequalities (6) can be written as 

(g(1)r _ rmaxg(2)T) m _--< 0 and (g(1)T _ rmi~g(2)r)m => 0, (7) 

which are in the same form as inequalities (2) for a pair of 
polarity observations but with different Green's functions. 
Inverting observed amplitude ratios is thus the same as in- 
verting polarities, but with modified Green's functions. 
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Once the polarities and amplitude ratios are expressed 
as a system of inequality constraints of the form (4), we use 
the simplex algorithm (e.g., Dantzig, 1963) to seek a "fea- 
sible" solution, that is, a mechanism consistent with the con- 
straints (Julian, 1986). The simplex algorithm does this by 
minimizing the "objective function" 

def 
F = ~_, IgTm - a , I ,  (8) 

i~S 

where the subscript i is an index into the system of inequal- 
ities of the form (4) and S is the set of inequalities that are 
not satisfied. In terms of amplitudes, the objective function 
is the L1 norm of the residuals: 

F = ~]  lu,I + ~ lu, - a,I + ~_. lu} ') - riu}2)l, (9)  
i~P iEQ iER 

where P is the set of polarity constraints that are not satisfied, 
Q is the set of amplitude constraints that are not satisfied, 
and R is the set of amplitude-ratio constraints that are not 
satisfied. The values a~ and r i may be either the maximum 
or the minimum bounds from equations (3) and (6), depend- 
ing on which bound is exceeded for each observation. Be- 
cause the data are seldom of equal quality, we generalize F 
by applying a weight w~ to each observation: 

F = ~ w~lu~l + ~. w~lu, - a~t ~- ~ Wi bl i (1) - -  r,u}Z)l. ( 1 0 )  
iEP iEQ iER 

If the minimum value for F found by the simplex al- 
gorithm is zero, then all the constraints are satisfied, and 
there is a nonempty set of feasible solutions. The simplex 
algorithm can then be applied again to maximize or mini- 
mize linear "objective" functions, for example, to identify 
superfluous constraints or to delimit the solution set by find- 
ing those feasible mechanisms that are extreme in terms of 
physical quantities such as volume change. 

Graphical Representation of Amplitude Ratios 

In graphical displays, we represent an amplitude ratio 
A:B by an arrow of unit length, oriented so that its slope 
equals A/B  (Fig. 1). The signs of A and B are taken into 
account so that the arrow points to the right or left accord- 
ingly as B is positive or negative, and up or down accordingly 
as A is positive or negative. The orientation of an arrow is 
independent of its position on the focal sphere. This display 
method should not be confused with that commonly used to 
represent a particle-motion direction. Its advantage over 
methods that use symbols of different sizes is that it does 
not place disproportionate emphasis on ratios with small de- 
nominators or small numerators. 
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Figure 1. Graphical representation of amplitude 
ratios. The ratio A:B is represented by an arrow of 
unit length whose slope is A/B. Each quadrant cor- 
responds to a unique combination of the signs of A 
and B. This representation has the advantages of (a) 
including information about the signs of the ampli- 
tudes A and B and (b) not causing strong visual dis- 
tortion when one of the amplitudes is small. 

Example 

To illustrate the use of linear programming to invert am- 
plitude ratios, we analyze an earthquake from the Hengill- 
Grensdalur geothermal area in southwestern Iceland. A ge- 
othermal area probably provides a rather severe test of the 
assumptions underlying the amplitude-ratio method, because 
geothermal fluids can cause large anomalies in the ratio Vp/ 

V s of the seismic-wave speeds (Julian et aL, 1996b). The 
Hengill-Grensdalur area is known, on the basis of first- 
motion studies, to be a rich source of non-double-couple 
earthquakes (Foulger and Long, 1984; Foulger, 1988; Foul- 
ger and Julian, 1993; Julian et al., 1996c), with mostly com- 
pressional P-wave polarities. During the summer of 1991, a 
network of 30 three-component seismometers, with natural 
frequencies of 2 Hz (Mark Products model L22D), were op- 
erated in an array about 25 km in diameter. The array ge- 
ometry was designed, by tracing rays through a three-di- 
mensional crustal model obtained in earlier work (Toomey 
and Foulger, 1989), to provide approximately uniform focal- 
sphere coverage for earthquakes in the area of greatest ac- 
tivity. About 4000 earthquakes were recorded digitally on 
REFTEK model 72A-02 Data Acquisition Systems at a rate 
of 100 samples/sec. 

Table 1 gives the hypocentral coordinates of the earth- 
quake and the measured wave amplitudes. P waves were 
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Table 1 
Observed Amplitudes for Earthquake of 15 September 1991, 
07:41:28 UTC, 64.0309 ° N, 21.2144 ° W, Depth 3.94 km Moment 

Magnitude 1.7 

Amplitude 
A* +¢ 0~ SH I 

Station (km) (o) (o) P~ (Counts) SV 11 

H001 13.69 225 93 - 2.05 

H004 12.62 259 94 - 3.67 9.00 

H005 3.59 210 129 4.62 - 2 0 . 4 3  

H006 6.84 122 104 4.07 26.56 

H007 1.77 143 151 5.82 - 2 6 . 8 2  

H008 7.73 88 101 - 4 . 1 7  

H009 3.44 64 131 - 1.74 - 5.03 

H010 0.08 332 179 34.81 - 116.5 

H011 2.05 290 148 29.86 114.7 

H012 2.46 22 142 35.59 - 163.4 

H014 4.02 352 125 89.46 - 165.7 

1-1015 3.47 312 130 30.81 114.3 

H016 5.05 267 116 105.0 

H017 7.45 272 102 - 2.43 72.94 

H018 2.06 338 147 56.61 - 5 4 . 5 4  

H021 10.55 317 95 12.40 33.24 

H024 5.15 2 115 56.71 - 8 0 . 3 4  

H025 5.23 25 114 12.96 - 90.07 

H026 8.15 50 100 - 3.00 - 48.47 

H028 10.91 1 95 11.47 

1-1029 9.91 333 96 8.30 

H031 18.81 342 74 2.78 

H033 5.63 296 112 9.02 74.46 

H034 6.42 341 107 20.62 

H035 11.43 31 95 0.77 - 8.52 

H036 11.11 152 95 7.39 14.11 

33.30 

24.02 

- 236.6 

75.92 

125.9 

*Epicentral distance. 

tAz imuth  of departing ray, measured clockwise from north. 

STake-off angle, measured from nadir. 

§Positive for outward motion. 

~Positive for c lockwise motion about the epicenter. 
tlpositive for motion toward the epicenter. 

measured on vertical-component seismograms and SH and 
SV waves were measured on transverse- and radial-compo- 
nent seismograms numerically rotated from the field orien- 
tations. To minimize distortion from wave-propagation ef- 
fects such as scattering and anelastic attenuation, we first 
low-pass filtered the seismograms, using a three-pole Butter- 
worth digital filter with a corner frequency of 5 Hz, chosen 
by visual inspection of the outputs from various filters. Am- 
plitudes were measured from the onset to the first peak, and 
only signals with similar rise times were used in ratios. Fig- 
ure 2 shows raw and filtered seismograms for two stations 
and illustrates how the amplitudes were measured. 

We mapped observations onto the focal sphere by nu- 
merically tracing rays (Julian and Gubbins, 1977) through 
the three-dimensional tomographic model of Foulger et al. 
(1995). Before inverting amplitude ratios, we corrected the 
amplitudes for mode conversion at the free surface, assuming 
plane waves incident at the surface of a homogeneous half- 
space with VldVs = 1.78 (Foulger et al., 1995). To avoid 
complicated mode-conversion effects, we used SV 

waves only if they emerged at the surface within 25 ° of the 
vertical direction. We corrected for wave attenuation (which 
affects compressional and shear waves differently and thus 
alters P:S amplitude ratios) using crustal Qp and Qs values 
measured in southwestern Iceland by Menke et al. (1995). 
We also multiplied each amplitude by the cube of the wave 
speed at the focus, to compensate for the systematic differ- 
ence between the radiated amplitudes of compressional and 
shear waves (see, for example, equations 4.91 of Aki and 
Richards, 1980). 

Polarity observations alone (the signs of the amplitudes 
in Table 1) do not constrain the mechanism well, even 
though the data are unusually well distributed on the focal 
sphere. Figure 3 shows the observed P, SH, and SVpolarities 
and compares them with the theoretical nodal surfaces for 
three mechanisms, whose moment tensors are given in Table 
2. The first two mechanisms, obtained by linear program- 
ming analysis, are consistent with all the observed first mo- 
tions. The "EXPLOSIVE" mechanism maximizes the trace of 
the moment tensor and the "IMPLOSIVE" mechanism min- 
imizes it. The "DOUBLE COUPLE" mechanism is the major 
double-couple component of the IMPLOSIVE mechanism. 
Because we invert only polarities and no amplitudes, the 
components of each moment tensor are undetermined within 
an arbitrary factor, and the values in Table 2 are therefore 
normalized arbitrarily. Table 2 also gives the relative mo- 
ments of the volumetric, double-couple, and "compensated 
linear-vector dipole" (CLVD) components (Julian et al., 
1996a) of each solution. Mechanisms consistent with the 
data range from dominantly explosive to nearly deviatoric, 
and strictly deviatoric mechanisms such as the double couple 
shown provide acceptable, though not perfect, fits. Further- 
more, S-wave polarities provide little additional constraint. 
All the solutions consistent with the P-wave polarities pre- 
dict nearly identical SH- and SV-wave polarity distributions. 

The observed amplitude ratios, on the other hand, rule 
out double-couple interpretations and require the mechanism 
to have a large explosive isotropic component. Figure 4 com- 
pares the observed P:SH and SH:SV amplitude ratios with 
the theoretical ratios for both the double-couple solution of 
Figure 3 and the mechanism obtained by inverting polarities 
and amplitude ratios simultaneously. Clearly, the inversion- 
derived mechanism fits the data much better than the double 
couple. Figure 5 compares the observed polarities with the 
theoretical polarity fields for this mechanism, which is sim- 
ilar to the EXPLOSIVE mechanism shown in Figure 3. 

The need for an isotropic component can be understood 
intuitively. The focal-sphere coverage is good, and any dou- 
ble-couple mechanism consistent with the polarities must 
resemble closely the one shown. Several of the observed P 
arrivals lie close to nodal planes of this mechanism and thus 
should have small amplitudes and appear as nearly horizon- 
tal arrows on Figure 4. On the contrary, the observed am- 
plitudes of these P waves are roughly comparable to the SH 
amplitudes and, thus, are inconsistent with a double-couple 
interpretation. 
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Figure 2. Rotated seismograms for earthquake of 07:41 UTC, 15 September 1991 
at the Hengill geothermal area, Iceland, considered in the example. (a) Station H007. 
(b) Station H007, filtered. (c) Station H006. (d) Station H006, filtered. Ordinate: digital 
counts (1 count = 3.2 × 10 -1° m). Filter has three-pole Butterworth low-pass re- 
sponse, with comer frequency 5 Hz. Arrows indicate amplitudes given in Table 1 and 
used in inversion. Note large signal/noise ratio on transverse components. 
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P SH 

EXPLOSIVE 

IMPLOSIVE 

DOUBLE COUPLE 

SV 

Figure 3. Three different focal mechanisms 
that are consistent or nearly consistent with 
P- and S-wave polarities for the earthquake of 
15 September 1991 07:41 UTC at the Hengill 
geothermal area, Iceland. The "EXPLOSIVE" 
mechanism maximizes the trace of the moment 
tensor, and the "IMPLOSIVE" mechanism min- 
imizes it. The "DOUBLE COUPLE" mechanism 
is the principal double-couple component of 
the IMPLOSIVE mechanism. Even with well- 
distributed stations, first-motion polarities can 
seldom resolve focal mechanisms well if gen- 
eral (moment-tensor) point sources are al- 
lowed. Including SH and SV polarity data does 
not help to identify the correct mechanism in 
this case. Upper focal hemispheres are shown 
in equal-area projection. Black symbols indi- 
cate positive polarities, and open symbols in- 
dicate negative polarities. Squares represent 
lower-hemisphere values plotted at their 
antinodal points. 

Table 2 

Derived Focal Mechanisms 

M,x Mx r Myy M,z Myz Mzz Vol. oc CLVD 

EXPLOSIVE 5.303 --2.512 --0.303 0.0 0.094 1.789 36% 49% 15% 
IMPLOSIVE 3.568 -- 1.978 -- 3.325 -- 0.445 0.634 -- 0.050 2% 92% 6% 
DC 8.504 -- 4.879 -- 8.533 -- 1.017 1.610 0.029 0% 100% 0% 
BEST 4.277 -- 1.661 -- 1.049 0.417 0.286 2.309 35% 47% 18% 

x axis directed north, y axis directed east, z axis directed down. 

Ampl i tude  Rat ios  Versus Ampl i tudes  

We also inverted ampli tudes  (rather than ratios) directly, 

to test the assumption that ampli tude ratios are less ser iously 

distorted than ampli tudes  by propagat ion effects and to de- 

te rmine  how wel l  this distort ion migh t  be  corrected.  We cor- 

rected the observed  amp l i t udes  for  m o d e  convers ion at the 

surface and wave  attenuation, as descr ibed above. We also 

correc ted  for geomet r ic  spreading,  which  is available as a 

by-product  o f  the three-d imensional  numer ica l  raytracing 

computat ions.  

In evaluat ing different  solutions,  we  use as a measure  

o f  goodness  o f  fit the m e a n  absolute  relat ive deviat ion 

(MARD), defined for  ampli tudes  as 

 °flNI I 
i~--1 Ui -- ai 

a, ] 
(11)  

and for ampli tude ratios as 

def 1 _(z),,(t) 
~ i  ~ i  - -  _ _  t ~  i u i  

E = N i = l  @T~i bli i Ui 
(12)  

In these equations,  ai, a! 1), and a} 2~ are observed ampli tudes  

and ui, u! l~, and u! 2~ are the cor responding  theoret ical  am- 
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b P/SH SH/SV BES  

Figure 4. (a) Comparison of observed P:SH and SH:SV amplitude ratios (black ar- 
rows) with theoretical ratios (gray arrows) for the double-couple mechanism shown in 
Figure 3. P:SH ratios are multiplied by the quantity (Vp/Vs) 3. (b) Same as (a), for the 
mechanism obtained by simultaneously inverting polarity and amplitude-ratio data us- 
ing the linear-programming method. This mechanism fits the data much better than the 
double couple and is similar to the EXPLOSIVE mechanism shown in Figure 3. Am- 
plitude ratios are represented as arrows (see Fig. 1) and are plotted on equal-area pro- 
jections of upper focal hemispheres. 

plitudes. The quantity whose absolute value appears on the 
fight-hand side of  equation (12) is the tangent of  the angle 
between the vectors representing an observed and a theoret- 
ical ratio, in the graphical representation shown in Figure 1. 

We can choose the constants w~ and ri in equation (10) 
so that for amplitudes the objective function F is identical 
(except for a constant factor N) to the MARl) E given in 
equation (11) and the simplex algorithm minimizes E. It is 

not possible, however, to establish such a correspondence 
for amplitude ratios, because the denominator in equation 
(12) contains the unknown quantities u! 1) and u! 2). Therefore, 
in amplitude-ratio inversion, we must use a suboptimal ob- 
jective function, and the MARD obtained is not optimal. 

Nevertheless, we obtain a significantly better fit to am- 
plitude ratios than to amplitudes. For amplitude ratios, the 
MARD obtained (with no geometric-spreading correction) is 
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Figure 5. Comparison of polarity data with 
nodal surfaces for the best-fitting focal mech- 
anism of Figure 4(b). Plotting conventions as 
in Figure 3. 

0.294, whereas for amplitudes, it is 0.426 when spreading 
corrections are applied and 0.678 when they are not. These 
results support the basic assumption on which this article is 
based: that wave propagation distorts amplitudes more than 
it does amplitude ratios. 

Conclusions 

Wave polarities, even when they include multiple seis- 
mic phases and cover the focal sphere well, provide poor 
resolution of earthquake focal mechanisms, if general mo- 
ment-tensor sources are allowed. To resolve mechanisms 
well, other types of observations, such as wave amplitudes, 
must be used, but amplitudes are severely distorted by wave 
propagation in the Earth. 

The ratios of the amplitudes of appropriately chosen 
seismic phases are comparatively insensitive to distortion by 
structural complexity and thus provide better constraints on 
the focal mechanisms of earthquakes than do simple ampli- 
tudes. Amplitude ratios can be inverted using a simple ex- 
tension of the linear-programming method (Julian, 1986), 
which is far more efficient than multi-parameter searching, 
especially when the solutions are free from artificial (e.g., 
double-couple) constraints. 

Amplitude ratios from an earthquake at the Hengill- 
Grensdalur geothermal area in southwestern Iceland can be 
fitted within a mean absolute relative deviation of 0.294, 
while amplitudes can be fitted only to within about 0.426. 
For this earthquake, amplitude ratios (primarily P:SH) re- 
quire a large volumetric component, which even unusually 
well-distributed multi-phase (P, SH, SV) polarity data cannot 
resolve. 

Appendix  

Absolute Amplitude Ratios 

The inversion method presented in the text deals with 
ratios of signed amplitudes, that is, with waves whose po- 
larities are known. It often happens, however, that ampli- 
tudes can be determined reliably even when polarities 
cannot. In this appendix, we show how to invert ratios 
of unsigned amplitudes, thereby extending the inversion 
method to waves with unknown polarities. The method is 

similar to the one given by Julian (1986) for inverting ab- 
solute amplitudes. 

Consider a pair of inequality constraints similar to those 
in equation (6), but involving absolute values of amplitudes, 

and 

C(1)lg(1)rml => C (2) Ig(2)rml, (A1) 

D(1)lg(1)rm[ ~ D(2)lg(2)rml. (A2) 

Introduce non-negative auxiliary "slack" and "error" vari- 
ables s (1), e (1), s (2), and e (2), defined by 

g ( 1 ) T m  + S (l)  - -  e 0 )  = 0 (A3) 

and 

g(2)rm + S (2) - -  e (2) = 0, 

with the additional constraints 

S (1) = 0 or e (1) = 0 

and 

(A4) 

(A5) 

DO)(sO) + e 0)) - D ( 2 ) ( s  (2) q- e (2)) q- y = 0 (A9) 

involving two more auxiliar-y variables, x and y (again non- 

and 

S (2) = 0 o r  e (2) = 0 .  (A6) 

Because of these constraints, the absolute value of each am- 
plitude is equal to the sum of its slack and error variables, 

Ig(l)rml = s 0) + e (1) and Ig(2)rml = s (2) + e (2), (A7) 

so the inequality constraints (A1) and (A2) can be expressed 
as the pair of equations 

C(1)(S (1) -1- e (1)) - -  C ( 2 ) ( s  (2) + e (2)) - x = 0 (A8) 
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negative with one of them equal to zero). Thus, the pair of 
inequality constraints on absolute amplitude ratios (A1) and 
(A2) adds four equations, (A3), (A4), (A8), and (A9), to the 
linear programming problem and introduces six auxiliary 
variables. 
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