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Abstract: The opening of the North Atlantic region was one of the most important geodynamic events that
shaped the present day passive margins of Europe, Greenland and North America. Although well-studied,
much remains to be understood about the evolution of the North Atlantic, including the role of the Jan
Mayen microplate complex. Geophysical data provide an image of the crustal structure of this microplate
and enable a detailed reconstruction of the rifting and spreading history. However, the mechanisms that
cause the separation of microplates between conjugate margins are still poorly understood. We assemble recent
models of rifting and passive margin formation in the North Atlantic and discuss possible scenarios that may
have led to the formation of the Jan Mayen microplate complex. This event was probably triggered by regional
plate tectonic reorganizations rejuvenating inherited structures. The axis of rifting and continental break-up and
the width of the Jan Mayen microplate complex were controlled by old Caledonian fossil subduction/suture
zones. Its length is related to east–west-oriented deformation and fracture zones, possibly linked to rheological
heterogeneities inherited from the pre-existing Precambrian terrane boundaries.

The North Atlantic region inspired some aspects of
plate tectonic theory (Fig. 1), including the Wilson
cycle, which predicts the closure of oceans, leading
to continent–continent collision followed by reopen-
ing along former sutures (Wilson 1966; Dewey &
Spall 1975). The North Atlantic is often considered
to be a textbook example of an ocean that opened
along the former sutures of at least two temporarily
distinct orogenic events: the Neoproterozoic
Grenvillian–Sveconorwegian and the early Paleozoic
Caledonian–Variscan orogenies (Ryan & Dewey
1997; Vauchez et al. 1997; Bowling & Harry 2001;
Thomas 2006; Misra 2016). Nevertheless, some
aspects of North Atlantic geology remain enigmatic,
such as the formation of the North Atlantic igneous
province (Vink 1984; White & McKenzie 1989;
Foulger & Anderson 2005; Meyer et al. 2007), the
development of volcanic passive margins (Franke
2013; Geoffroy et al. 2015), the formation of Iceland
and the development of the Jan Mayen microplate
complex (JMMC), also referred to as the Jan
Mayen microcontinent (Foulger et al. 2003; Gaina
et al. 2009; Gernigon et al. 2015). The JMMCconsist
of both oceanic and continental crust, probably

highly thinned and magmatically modified (Kuvaas
& Kodaira 1997; Blischke et al. 2017 and references
cited therein). Large parts of it remain to be studied,
however. Other continental fragments have been
identified in the North Atlantic region (Nemc ̌ok
et al. 2016) and more may underlie parts of Iceland
and/or the Iceland–Faroe Ridge (IFR) (Fedorova
et al. 2005; Foulger 2006; Paquette et al. 2006;
Gernigon et al. 2012; Torsvik et al. 2015).

Geological setting of the North
Atlantic region

Following the collision of Laurentia, Baltica and
Avalonia in the Ordovician and Silurian (Roberts
2003; Gee et al. 2008; Leslie et al. 2008) and subse-
quent gravitational extensional collapse in the late
orogenic phases (Dewey 1988; Dunlap & Fossen
1998; Rey et al. 2001; Fossen 2010), the North
Atlantic region experienced lithospheric delam-
ination and associated uplift over a period of
30–40 Ma, followed by a long period of rifting
(Andersen et al. 1991; Dewey et al. 1993). Phases
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of extension and cooling transitioned into continen-
tal rifting that led to final continental break-up and
seafloor spreading between Greenland and Europe

in the early Paleogene (Talwani & Eldholm 1977;
Skogseid et al. 2000). During the late Mesozoic,
continental break-up propagated simultaneously

Fig. 1. Bathymetric map of the present day North Atlantic. Bathymetry from the General Bathymetric Chart of the
Oceans (www.gebco.net). Major oceanic fracture zones after Doré et al. (2008), Mid-ocean ridges from Seton et al.
(2012), microcontinents from Torsvik et al. (2015). The Greenland–Iceland–Faroe Ridge consists of the Greenland–
Iceland Ridge, the Iceland Plateau and the Iceland–Faroe Ridge. The position of the Iceland–Faroe Fracture Zone is
stippled, but its existence and nature is debated (see text). AO, Arctic Ocean; AR, Aegir Ridge; BB, Baffin Bay; BFZ,
Bight Fracture Zone; BI, Baffin Island; BR, Britain; BS, Barents Sea; CGFZ, Charlie Gibbs Fracture Zone; DS, Davis
Strait; EB, Eurasia basin; EI, Ellesmere Island; EJMFZ, East Jan Mayen Fracture Zone; FI, Faroe Islands; GIR,
Greenland–Iceland Ridge; GR, Greenland; IC, Iceland; IFFZ, Iceland–Faroe Fracture Zone; IFR, Iceland–Faroe
Ridge; IR, Ireland; JM, Jan Mayen; KR, Kolbeinsey Ridge; LA, Labrador; LS, Labrador Sea; NF, Newfoundland;
NS, Nares Strait; RP, Rockall Plateau; RR, Reykjanes Ridge; SC, Scandinavia; SFZ, Senja Fracture Zone; SI,
Shetland Islands; SV, Svalbard; WJMFZ, West Jan Mayen Fracture Zone.
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southwards from the Eurasia Basin and northwards
from the Central Atlantic, initially into the Labrador
Sea–Baffin Bay rift system and then into the North
Atlantic (Srivastava 1978; Doré et al. 2008).
Whether rifting, continental break-up and the
associated magmatism were initiated by active man-
tle upwelling, for example a deep mantle plume
(White & McKenzie 1989; Hill 1991; Nielsen
et al. 2002; Rickers et al. 2013) or plate-driven pro-
cesses (Nielsen et al. 2007; Ellis & Stoker 2014)
(bottom-up or top-down views) is still under debate
(van Wijk et al. 2001; Foulger et al. 2005b; Lundin
&Doré 2005; Simon et al. 2009; Peace et al. 2017a).

The Northeast Atlantic spreading axis initially
consisted of the Reykjanes Ridge and the Aegir
Ridge, east of the JMMC and the Mohns Ridge fur-
ther north (Talwani & Eldholm 1977; Nunns 1983,
Fig. 1). Independent rotation of the JMMC resulted
in the fan-shaped opening of the Norway Basin dur-
ing the Eocene (Nunns 1983; Gaina et al. 2009; Ger-
nigon et al. 2012). This reconfiguration led to a
second phase of break-up and the separation of the
JMMC from Greenland at about magnetic anomaly
chron C7 (c. 24 Ma) (Vogt et al. 1970; Gaina et al.
2009; Gernigon et al. 2015). After a period of simul-
taneous rifting on both the Aegir Ridge and the com-
plex JMMC/proto-Kolbeinsey rift/ridge system
(Doré et al. 2008; Gaina et al. 2009; Gernigon
et al. 2015), the Aegir Ridge was abandoned in the
Oligocene and the spreading centre relocated to the
west of the JMMC onto the Kolbeinsey Ridge.

Although the history of rifting in the North Atlan-
tic is becoming increasingly better constrained, the
mechanisms controlling the location, timing and
formation of rifts, fracture zones and associated
microcontinents are still poorly understood. The for-
mation of the JMMC has been traditionally attributed
to mantle plume impingement and subsequent litho-
spheric weakening (Müller et al. 2001). More
recently it has been suggested to result from the
breaching of lithosphere weakened as a result of pre-
existing structures (e.g. Schiffer et al. 2015b). The
present-day North Atlantic shows evidence for
dynamic topography that may have assisted breakup
processes (Schiffer & Nielsen 2016). The final sepa-
ration of the JMMC is also spatially and temporally
linked to enhanced magmatic activity and the subse-
quent formation of Iceland (Doré et al. 2008; Tegner
et al. 2008; Larsen et al. 2013; Schiffer et al. 2015b),
but it lacks the classic features of a volcanic passive
margin (e.g. underplating and seaward-dipping
reflectors) along its western continent–ocean boun-
dary, conjugate to the East Greenland margin
(Kodaira et al. 1998; Breivik et al. 2012; Peron-
Pinvidic et al. 2012;Blischke et al. 2017).Wediscuss
here the possible role of pre-existing structures and
inheritance in the formation of the JMMCas an exten-
sion to the Wilson cycle and plate tectonic theory.

Jan Mayen microplate complex

The JMMC has a bathymetric signature stretching
>500 km from north to south in the central part of
the Norwegian–Greenland Sea (Fig. 1) (Gudlaugs-
son et al. 1988; Kuvaas & Kodaira 1997; Blischke
et al. 2017). It is bordered to the north by the Jan
Mayen Fracture Zone and the volcanic complex of
Jan Mayen Island. To the south, it is bordered by
the NE coastal shelf of Iceland, which is part of the
Greenland–Iceland–Faroe Ridge (GIFR), a zone of
shallow bathymetry c. 1100 km in length (Figs 1 &
2). The JMMC separates the Norway Basin to the
east from the Iceland Plateau to the west (Vogt et al.
1981; Kandilarov et al. 2012; Blischke et al. 2017).

The JMMC crust has been inferred to be conti-
nental, primarily on the basis of seismic refraction
data (Kodaira et al. 1997, 1998; Mjelde et al. 2007a;
Breivik et al. 2012; Kandilarov et al. 2012). How-
ever, the crustal affinity remains uncertain for large
areas of the JMMC, particularly near Iceland in
the south (Breivik et al. 2012; Brandsdóttir et al.
2015) due to a lack of geophysical data and boreholes
(see Gernigon et al. 2015; Blischke et al. 2017 for
data coverage). Fundamentally, the distribution of
oceanic v. continental crust and the nature of the
deformation expected between the JMMC, Iceland
and the Faroe continental block are unknown. Recent
high-resolution aeromagnetic data and pre-rift recon-
structions of the Norwegian–Greenland Sea show
that the southern JMMC underwent extreme thin-
ning during the first phase of break-up and, because
it now has a width of c. 250–300 km, 400% of exten-
sion has occurred relative to its pre-drift configura-
tion (Gernigon et al. 2015). It seems unlikely that
this extreme extension is entirely accommodated
by the thinning of continental crust. We cannot
rule out the possibility that the southern JMMC con-
sists partly of igneous crust (Gernigon et al. 2015) or
exhumed mantle (Blischke et al. 2017).

An oceanic fracture zone might be present south
of the JMMC between the northeastern tip of the Ice-
land Plateau and the Faroe Islands in the SE (i.e. the
postulated Iceland–Faroe Fracture Zone; see Figs 1
& 2; Blischke et al. 2017). However, an oceanic frac-
ture zone or transform requires oceanic lithosphere
on both sides and, given the uncertain crustal affin-
ity, this interpretation is speculative. A lineament
exists north of the Iceland–Faroe Ridge, but mag-
netic and gravity potential field data do not provide
conclusive evidence for a real oceanic transform or
fracture zone (Fig. 3). Gernigon et al. (2012) showed
that continuation of the magnetic chrons mapped in
the Norway Basin and the high-magnetic trends
observed along the IFR remain unclear, notably
due to the low quality, sparse distribution of the mag-
netic profiles along the IFR and later igneous over-
printing related to the formation of Iceland. No
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Fig. 2. Overview map of the present day North Atlantic. Seafloor age from Seton et al. (2012); major oceanic
fracture zones after Doré et al. (2008); distribution of igneous rocks of the North Atlantic Igneous Province after
Upton (1988), Larsen & Saunders (1998), Abdelmalak et al. (2012); Precambrian basement terranes after Balling
(2000) and Indrevær et al. (2013) (Scandinavia) and St-Onge et al. (2009) (Greenland and northeastern Canada).
Caledonian deformation front after Skogseid et al. (2000) and Gee et al. (2008). K, Karelian; KE, Ketilian Orogen;
LK, Lapland–Kola; NAC, North Atlantic Craton; NO, Nagssugtoqidian Orogen; RO, Rinkian Orogen; SF,
Svecofennian; SN, Sveconorwegian; TIB, Transscandinavian Igneous Belt.
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magnetic chron is identified in the broad NE–SW
magnetic lineations, especially west of the Faroe
Platform. Additional magnetic disparities are associ-
ated with lateral variations in basement depth and
possible discrete ridge jumps (e.g. Smallwood &
White 2002; Hjartarson et al. 2017).

The IFR consists of anomalously thick crust
(>20–25 km), possibly to parts associated with mas-
sive crustal underplating, which is generally attrib-
uted to increased magmatism (Staples et al. 1997;
Richardson et al. 1998; Smallwood et al. 1999; Dar-
byshire et al. 2000; Greenhalgh & Kusznir 2007).
The origin and nature of the GIFR remains contro-
versial (McBride et al. 2004) because the crust
shows atypical geophysical properties and differs
from ‘normal’ continental and oceanic crust (Bott
1974; Foulger et al. 2003). Hjartarson et al. (2017)
favour an oceanic origin for the IFR, but do not
exclude the presence of seaward-dipping reflectors
and old basement in the expected ‘oceanic domain’.

Some researchers have suggested that the excess
thickness under Iceland may be partly attributed to
buried continental crust, possibly extending up to
the JMMC and Iceland (Fedorova et al. 2005;
Foulger 2006). Continental zircons and geochemical
analyses of lavas in SE Iceland support the presence
of continental material (Paquette et al. 2006; Torsvik
et al. 2015). The Aegir Ridge and the Reykjanes
Ridge might never have connected during the early
stage of spreading of the Norway Basin, which
involved complex overlapping spreading segments
along the IFR. Such overlapping spreading ridges
may have preserved continental lithosphere in
between (Gaina et al. 2009; Gernigon et al. 2012,
2015; Ellis & Stoker 2014). Ellis & Stoker (2014)
suggested that complete continental break-up along
the GIFR did not occur before the separation of the
JMMC and the appearance of Iceland (first dated
eruptions at c. 18 Ma). Gernigon et al. (2015) sug-
gested earlier break-up, possibly between C22/C21
(c. 47 Ma) and C6 (c. 24 Ma) during the onset of sig-
nificant rifting in the southern part of the JMMC. The
continental lithosphere east of Iceland (the IFR,
Fig. 1) probably did not entirely breach in the early
rifting of the North Atlantic (e.g. C24r–C22, Early
Eocene). To avoid further ambiguity, we refer to it
as the Iceland–Faroe accommodation zone (IFAZ).
Consequently, the IFAZ may characterize local con-
tinental transform margin segments, a diffuse strike-
slip fault zone and/or a more complex oblique/
transtensional continental rift system that initially
formed along the trend of the proto IFR.

Microplate formation

An aspect of the Wilson cycle that requires more
clarification (Thomas 2006; Huerta & Harry 2012;

Buiter & Torsvik 2014) is whether the locations
of major, pre-existing structures can explain the for-
mation, location and structure of microplates such as
the JMMC (Schiffer et al. 2015a). Understanding the
formation of continental fragments is crucial to
understanding continental break-up (Lavier & Man-
atschal 2006; Peron-Pinvidic & Manatschal 2010).
Microcontinents and continental ribbons represent
one category of continental fragments produced dur-
ing rifting and break-up (Lister et al. 1986; Peron-
Pinvidic & Manatschal 2010; Tetreault & Buiter
2014).

We follow the original definition of a micro-
continent Scrutton (1976) that it must contain:
(1) pre-rift basement rocks; (2) crust and lithosphere
of continental affinity, horizontally displaced from
the original continent and surrounded by oceanic
crust; and (3) a distinct morphological feature in
the surrounding oceanic basins. Such a system
between two pairs of conjugate margins may also
include isolated fragments of oceanic crust and lith-
osphere that deformed together before final and
definitive isolation from the conjugate continents.
To make a distinction, we call such a feature a micro-
plate complex and it can involve several sub-plates
of oceanic and/or continental affinity. A true micro-
continent will therefore consist of just one kind of
microplate complex. The most important aspect of
the present study is that such a microplate complex,
like a true microcontinent, is separated from the main
continental conjugate margins by two or more
spreading ridges. The cause, history and processes
leading to relocalization of the complex are not
well understood. Suggested mechanisms include
the impact of a mantle plume (Müller et al. 2001;
Gaina et al. 2003; Mittelstaedt et al. 2008), global
plate tectonic reorganization (Collier et al. 2008;
Gaina et al. 2009) and ridge jumps that exploit inho-
mogeneities, weaknesses and rheological contrasts
in the continental lithosphere after the abandonment
of a previous spreading ridge (Abera et al. 2016;
Sinha et al. 2016). This could be nascent or inherited
underplating (Yamasaki & Gernigon 2010) and/or
fossil suture zones (Petersen & Schiffer 2016).
Strike-slip mechanisms under different transten-
sional and transpressional stress regimes have also
been proposed to generate microcontinents
(Nemc ̌ok et al. 2016). Microplates can also result
from crustal fragmentation during volcanic margin
formation by large-scale continent-vergent faults
formed/activated by strengthening of the deep con-
tinental crust: the so-called C-block mechanism
(Geoffroy et al. 2015).

Whittaker et al. (2016) proposed a model for
microcontinent formation between Australia and
Greater India whereby changes in the direction
of plate motion caused transpression and stress
build-up across large-offset fracture zones, leading

JAN MAYEN MICROPLATE COMPLEX

 by guest on April 3, 2018http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


C. SCHIFFER ET AL.

 by guest on April 3, 2018http://sp.lyellcollection.org/Downloaded from 

http://sp.lyellcollection.org/


to the transfer of deformation to a less resistive
locus (Fig. 4). Their proposed model is as follows.
Initially, NW–SE spreading separated Australia
from Greater India with transtensional or strike-slip
motion along the Wallaby–Zenith Fracture Zone
from 133 Ma. A plume (Kerguelen) is postulated to
have been in the vicinity and may have maintained
and/or enhanced crustal weakening of the SE
Greater India rifted margin. Reorganizations of
motion between Australia and Greater India to a
NNW–SSE direction at 105 Ma resulted in trans-
pression along the NW–SE-oriented Wallaby–
Zenith Fracture Zone. As a result, the spreading cen-
tre relocated to the west along the continental margin
of India, calving off the Batavia and Gulden Draak
microcontinents and resulting in abandonment of the
Dirck Hartog spreading ridge to the south (Fig. 4).

North Atlantic: structure and inheritance

The classic Wilson cycle model envisages closure
and reopening of oceans along continental sutures.
In this model, break-up is guided by lithospheric
inheritance from previous orogenesis (Wilson 1966;
Dewey & Spall 1975). Inheritance, rejuvenation
and the control of pre-existing structures on localiz-
ing deformation occurs on various scales and styles

beyond the large-scale break-up of continents
(Holdsworth et al. 1997; Manatschal et al. 2015;
Peace et al. 2017b). Inherited features may include
variations in crustal or lithospheric thickness, struc-
tural and compositional heterogeneity across terrane
boundaries, accreted terranes, sedimentary basins
and/or intruded,metamorphosed andmetasomatized
material and fabrics. These heterogeneities may also
cause thermal and rheological anomalies that vary in
size, depth and degree of anisotropy and that can
potentially be rejuvenated given the appropriate
stresses (Krabbendam & Barr 2000; Tommasi et al.
2009; Manatschal et al. 2015; Tommasi & Vauchez
2015). Inheritance is an important control on rifting,
passive margin end-member style (e.g. volcanic or
non-volcanic) (Vauchez et al. 1997; Bowling &
Harry 2001; Chenin et al. 2015; Manatschal et al.
2015; Schiffer et al. 2015b; Svartman Dias et al.
2015; Duretz et al. 2016; Petersen & Schiffer 2016),
the formation of fracture zones, transform faults, trans-
form margins (Thomas 2006; Gerya 2012; Doré et al.
2016), magmatism (Hansen et al. 2009; Whalen et al.
2015), compressional deformation (Sutherland et al.
2000; Gorczyk & Vogt 2015; Heron et al. 2016), the
break-upof supercontinents and supercontinent cycles
(Vauchez et al. 1997; Audet & Bürgmann 2011; Fri-
zon de Lamotte et al. 2015).

Fig. 4. Model for the formation of the Batavia and Gulden Draak microcontinents in the Indian Ocean proposed by
Whittaker et al. (2016). (a) Initial seafloor spreading occurred perpendicular to the regional plate motions, including
the Wallaby–Zenith Fracture Zone. (b) A reconfiguration of plate motions oblique to the developed spreading axes
locked the fracture zone, which forced the southern spreading axis to relocate onto a new axis. (c) The new spreading
isolates continental fragments (microcontinents) and seafloor spreading separates these from the Indian plate. Large
arrows indicate plate motions. Arrows along spreading ridges indicate the spreading direction. Dots with arrows
indicate the transpressional regime along the former fracture zone. WZFZ, Wallaby–Zenith Fracture Zone.

Fig. 3. (a) Bathymetry, (b) free air gravity and (c) magnetic anomaly maps of the Norway Basin, the Jan Mayen
microplate complex (JMMC), Iceland, the Iceland–Faroe Ridge and surrounding conjugate margins (modified after
Gernigon et al. 2015). The bathymetric map illustrates the special physiological nature of the JMMC, coinciding with
large free air gravity anomalies. Magnetic anomalies within the boundaries of the JMMC are weak. This is in contrast
with the adjacent Norway Basin, which shows clear magnetic spreading anomalies, and gravity and topographic
anomalies that evidence fan-shaped spreading along the extinct Aegir Ridge. There are vague indications in the
bathymetric, gravity and magnetic data for the existence of a lineament stretching from the south of the JMMC to the
Faroe–Shetland Basin, possibly the Iceland–Faroe Fracture Zone (Blischke et al. 2017), but the data do not provide
indisputable evidence for the existence and nature of this lineament. EJMFZ, East Jan Mayen Fracture Zone; IFFZ,
Iceland–Faroe Fracture Zone; WJMFZ, West Jan Mayen Fracture Zone.
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Precambrian orogenies

In Canada, Greenland and NW Europe, multiple
suturing events have built continental lithosphere
that consists of Archean to early Proterozoic cratons
surrounded by younger terranes. Preserved sutures
and subduction zones in the interior of the cratons
have survived subsequent amalgamation, demon-
strating that crustal and upper mantle heterogeneities
may persist for billions of years (Balling 2000; van
der Velden & Cook 2005). Terrane boundaries of
any age may act as rheological boundaries that influ-
ence or control crustal deformation long after their
formation and independently of subsequent plate
motions. Major Precambrian terrane boundaries in
the North Atlantic region are shown in Figure 2.

Multiple Precambrian suturing events have con-
tributed to the amalgamation of the Baltic Shield in
Scandinavia. The Lapland–Kola mobile belt formed
by the accretion of various Archean to Paleoprotero-
zoic terranes, including the oldest Karelian terrane
(Gorbatschev & Bogdanova 1993; Bergh et al.
2012; Balling 2013). This was followed by the late
Paleoproterozoic Svecofennian accretion, the for-
mation of the Transscandinavian igneous belt and
the Meso-Neoproterozoic Sveconorwegian orogeny
(Gorbatschev & Bogdanova 1993; Bingen et al.
2008; Bergh et al. 2012; Balling 2013; Slagstad
et al. 2017).

Precambrian terranes are also preserved in Green-
land, the oldest of which are Archean in age and
include the North Atlantic and Rae cratons (St-Onge
et al. 2009). The components that together constitute
the North Atlantic Craton formed from 3850 to
2550 Ma (Polat et al. 2014) and the Rae Craton
formed from 2730 to 2900 Ma (St-Onge et al.
2009). Paleoproterozoic terranes in Greenland sur-
round the North Atlantic Craton and include the
Nagssugtoqidian Orogen (Van Gool et al. 2002),
the Rinkian Orogen (Grocott & McCaffrey 2017)
and the Ketilidian mobile belt (Garde et al. 2002).

The Precambrian terranes of NE Canada, Green-
land and Scandinavia are thought to have formed
as coherent mobile belts (Kerr et al. 1996; Wardle
et al. 2002; St-Onge et al. 2009). As Greenland
and North America have not undergone significant
relative lateral motion or rotation, the interpretation
of conjugate margins is relatively simple (Kerr
et al. 1996; Peace et al. 2016). By contrast, whether
Baltica has experienced rotation (Gorbatschev &
Bogdanova 1993; Bergh et al. 2012) is currently
unresolved.

Caledonian orogeny

Formation of the Ordovician to Devonian
Caledonian–Appalachian Orogen preceded rifting,
ocean spreading and subsequent passive margin

formation of the present day North Atlantic. This
Himalaya-style orogen involved at least two phases
of subduction: the early eastward-dipping Gram-
pian–Taconian event and the late westward-dipping
Scandian event, which led to the assembly of part
of Pangaea (Roberts 2003; Gee et al. 2008). The
structural fabric of the crust and lithospheric mantle
can be reoriented during orogenesis, resulting in fab-
ric anisotropy that localizes subsequent deformation
(Tommasi et al. 2009; Tommasi & Vauchez 2015).

High-velocity, lower crustal bodies (HVLCBs)
are observed along many passive continental mar-
gins (Lundin & Doré 2011; Funck et al. 2017a)
and have been traditionally associated with mag-
matic underplating or intrusions into the lower
crust of passive margins during break-up (Olafsson
et al. 1992; Eldholm & Grue 1994; Mjelde et al.
2007b; White et al. 2008; Thybo & Artemieva
2013). However, with improved data, alternative
interpretations have been proposed, such as synrift
serpentinization of the uppermost mantle under pas-
sive margins (Ren et al. 1998; Reynisson et al. 2010;
Lundin & Doré 2011; Peron-Pinvidic et al. 2013). It
has also been suggested that part of the continental
HVLCBs may be remnants of inherited metamor-
phosed crust or hydrated meta-peridotite that existed
prior to initial rifting and continental break-up (Ger-
nigon et al. 2004, 2006; Fichler et al. 2011; Wangen
et al. 2011; Mjelde et al. 2013; Nirrengarten et al.
2014).

Mjelde et al. (2013) identified a number of such
‘orogenic’ HVLCBs along different parts of the
North Atlantic passive margins (the south and mid-
Norwegian margin, the East Greenland margin, the
SW Barents Sea margin and the Labrador margin),
which may have higher than normal upper mantle
velocities (Vp > 8.2 km s−1). These may consist of
eclogitized crust and be part of the Iapetus Suture.
Petersen & Schiffer (2016) proposed a mechanism
to explain the presence of old inherited HVLCBs
beneath the rifted margins and concluded that
they could represent preserved and subsequently
deformed pre-existing subduction/suture zones
that were activated during rifting and continental
break-up. Eclogite in a fossil slab has a similar,
but weaker, rheology than the surrounding dry
olivine lithosphere (Zhang & Green 2007), whereas
a fossil hydrated mantle wedge acts as an effective
and dominant weak zone. Eclogites of the Bergen
Arc (Norway) show softening due to fluid infiltra-
tion (Jolivet et al. 2005). These ultra-high-velocity
HVLCBs (ultra-HVLCBs) are distributed primarily
along the mid-Norwegian margin and the Score-
sbysund area in East Greenland (Mjelde et al.
2013). This suggests that at least one fossil subduc-
tion zone may have been subject to rift-related
deformation and exhumation (Petersen & Schiffer
2016).
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Structures in the Central Fjord area of East
Greenland (Schiffer et al. 2014), the Flannan reflec-
tor in northern Scotland (Snyder & Flack 1990;
Warner et al. 1996) and the Danish North Sea (Abra-
movitz & Thybo 2000) have been interpreted as
preserved orogenic structures of Caledonian age
(i.e. fossil subduction or suture zones) (Fig. 2).
Schiffer et al. (2015a) proposed that the Central
Fjord structure and the Flannan reflector once
formed a contiguous eastward-dipping subduction
zone, possibly of Caledonian age, that may have
influenced rift, magmatic and passive margin evolu-
tion in the North Atlantic (Fig. 2). Combined geo-
physical–petrological modelling of the Central
Fjord structure suggests that it consists of a relict
hydrated mantle wedge associated with a fossil sub-
duction zone (Schiffer et al. 2015b, 2016).

The most recent Caledonian subduction event
was associated with the Scandian phase, leading to
the westward subduction of Iapetus crust (Roberts
2003; Gee et al. 2008). Evidence of this subduction
zone in the form of a preserved slab has not been
detected in the lithospheric mantle of the Norwegian
Caledonides. However, the fossil subduction zone in
the Danish North Sea detected by the Mona Lisa
experiments (Abramovitz & Thybo 2000) might
be the trace of this event. HVLCBs indicative of
eclogite along the mid-Norwegian margin (Mjelde
et al. 2013; Kvarven et al. 2016) and Norwegian
North Sea (Christiansson et al. 2000; Fichler et al.
2011) might also represent deformed remnants of
the Scandian subduction.

Fracture and accommodation zones

The JMMC is bound by two tectonic boundaries
including the East and West JMFZs in the north
and the postulated IFAZ in the south. These tectonic
boundaries accommodated and allowed the non-
rigid microplate to move independently from the sur-
rounding North Atlantic oceanic domains (Gaina
et al. 2009; Gernigon et al. 2012, 2015).

Relationships between pre-existing structures
and the formation of large-scale shear and fracture
zones, oceanic transforms or other accommoda-
tion/deformation zones have been proposed previ-
ously (Mohriak & Rosendahl 2003; Thomas 2006;
Taylor et al. 2009; de Castro et al. 2012; Gerya
2012; Bellahsen et al. 2013; Gibson et al. 2013).
The location, orientation and nature of fracture
zones in the North Atlantic may be linked to litho-
spheric inheritance (Behn & Lin 2000). For exam-
ple, the Charlie Gibbs Fracture Zone between
Newfoundland and the British/Irish shelf has been
linked to the location of the Iapetus Suture and
the inheritance of compositional and structural
weaknesses (Tate 1992; Buiter & Torsvik 2014).
The Bight Fracture Zone might be linked to the

Grenvillian Front, which is exposed in Labrador
(Lorenz et al. 2012).

The IFAZ represents a complex discontinuity
zone along the present day GIFR. Fragments of
continental crust may be preserved along this transi-
tion zone between the Reykjanes, Aegir and Kol-
beinsey ridges, together with discontinuous and/or
overlapping oceanic fragments affected later by sig-
nificant magmatic overprint (the Icelandic swell;
Bott 1988). In the geodynamic context, it may
have formed along the fossil subduction zone pro-
posed to have existed between the East Greenland
and British/Irish margins (Fig. 2). It has also been
proposed that it may have comprised part of the
Kangerlussuak Fjord tectonic lineament, a NW–

SE-oriented lineament in East Greenland (Tegner
et al. 2008).

Other deformation zones may correlate with
Precambrian basement terrane boundaries in Scan-
dinavia. These are overprinted by Caledonian de-
formation, obscuring older relationships (cf. the
Caledonian deformation front in Fig. 2) and gener-
ating new orogenic fabrics (Vauchez et al. 1998).
The westwards extrapolation of the northern Sveco-
norwegian suture may correlate with the East
JMFZ, whereas extrapolation of the Svecofen-
nian–Karelian suture may correspond to the forma-
tion of the Senja Fracture Zone (Doré et al. 1999;
Fichler et al. 1999; Indrevær et al. 2013). Extrapo-
lation of the Karelian–Lapland–Kola terrane suture
converges with the complex DeGeer Fracture Zone,
which marks the transition of the North Atlantic to
the Arctic Ocean (Engen et al. 2008). These corre-
lations suggest that Precambrian basement inheri-
tance localizes strain during initial continental
rifting. However, the exact location and grade of
deformation of Precambrian sutures under the Cale-
donides and the highly stretched continental mar-
gins is often poorly known or not known at all.
Thus any correlation is speculative and requires fur-
ther work.

Iceland and magmatic evolution

Factors including the thermal state of the crust and
mantle, small-scale convection, upwelling, composi-
tion, volatile content, and lithospheric and crustal
structure may all have roles in magmatic evolution
(King&Anderson 1998;Asimow&Langmuir 2003;
Korenaga 2004; Foulger et al. 2005a; Hansen et al.
2009; Brown & Lesher 2014; Chenin et al. 2015;
Hole & Millett 2016).

Inheritance may influence the amount of volca-
nism produced in the North Atlantic because vol-
canic passive margins preferentially develop in
regions of heterogeneous crust where Paleozoic oro-
genic belts separate Precambrian terranes. Con-
versely, magma-poor margins often develop in the
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interiors of orogenic belts with either uniform Pre-
cambrian or younger Paleozoic crust (Bowling &
Harry 2001). For example, the intersection of the
East Greenland–Flannan fossil subduction zone
with the North Atlantic rift axis correlates spatially
and temporally with pre-break-up magmatism, the
formation of the JMMC and the occurrence of the
Iceland melt anomaly along the sub-parallel Green-
land Iceland Ridge (GIR) (Schiffer et al. 2015b).

Prior to break-up (c. 55 Ma), magma was domi-
nantly emplaced along and SW of the proposed
East Greenland–Flannan fossil subduction zone
(Fig. 2) (Ziegler 1990; Torsvik et al. 2002). This
may partly be an effect of the south-to-north unzip-
ping of the pre-North Atlantic lithosphere. Other pro-
cesses that produce enhanced mantle melting are
increased temperature, mantle composition and
active asthenospheric upwelling (Brown & Lesher
2014). The zonation of areas with and without mag-
matism may suggest that the proposed structure is a
boundary zone between lithospheric blocks of differ-
ent composition and rheology that react differently to
applied stresses. Different relative strengths in the
crust and mantle lithosphere, for instance, could
cause depth-dependent deformation, where thinning
is focused in the mantle lithosphere (Huismans &
Beaumont 2011). Petersen & Schiffer (2016) dem-
onstrated that the extension of orogenic litho-
sphere with thickened crust (>45 km) leads to
depth-dependent thinning, where the mantle litho-
sphere breaks earlier than the crust and, as a result,
encourages pre-break-up magmatism. Indirectly,
sub-continental mantle heterogeneities may encour-
age the localization of deformation, leading to a
rapid and sudden increase in lithospheric thinning
(Yamasaki & Gernigon 2010). These processes
could contribute to pre-break-up adiabatic decom-
pression melting (Petersen & Schiffer 2016).

Enhanced magmatism could also be caused by a
lowered solidus due to the presence of eclogite
(Foulger et al. 2005a), water (Asimow & Langmuir
2003) or carbon dioxide in the mantle (Dasgupta &
Hirschmann 2006). Atypical magmatism is, surpris-
ingly, observed along the interpolated axis of the
proposed fossil subduction zone. It currently coin-
cides with the GIFR where the igneous crustal thick-
ness is inferred to be the greatest (Bott 1983;
Smallwood et al. 1999; Holbrook et al. 2001; Mjelde
& Faleide 2009; Funck et al. 2017b). However, it is
unclear whether the entire thickness of Iceland-type
crust (Bott 1974; Foulger et al. 2003) has a crustal
and/or continental petrology (Foulger et al. 2003;
Foulger & Anderson 2005).

Higher water contents have been recorded in
basalts and volcanic glass in the vicinity of the fossil
subduction zone (the Blosseville Kyst, East Green-
land, Iceland and one sample from the Faroe Islands;
see Fig. 2) than in regions further away from Iceland

(West Greenland, Hold with Hope, Reykjanes
Ridge) (Jamtveit et al. 2001; Nichols et al. 2002).
This is consistent with a hydrated upper mantle
source as a consequence of melting Caledonian sub-
ducted materials (Schiffer et al. 2015a). Water in the
mantle may also contribute to enhanced melt produc-
tion and thus unusually thick igneous crust (Asimow
& Langmuir 2003).

The formation of the Iceland Plateau (>18 Ma)
followed the extinction of the Aegir Ridge and
full spreading being taken up on the Kolbeinsey
Ridge (Doré et al. 2008). This migration of the
spreading ridge was contemporaneous with far-field
plate tectonic reconfigurations, the end of seafloor
spreading in the Labrador–Baffin Bay system
(Chalmers & Pulvertaft 2001) and a global change
in the motion of the Greenland plate from SW–NE
to west–east (Gaina et al. 2009; Abdelmalak et al.
2012).

Inheritance model for the formation
of the JMMC

We propose a new tectonic model for the formation
of the JMMC, linking the rejuvenation of old and
pre-existing orogenic structures to global plate tec-
tonic reconfigurations. In our model, a change in the
orientation of the regional stress field in the Eocene
rejuvenated pre-existing structures with favoura-
ble orientations. This caused the relocalization of
extension and spreading ridges, resulting in the for-
mation of a microplate between the large European
and American/Greenland continental plates. Our
model closely follows that ofWhittaker et al. (2016),
with the extension that a fossil subduction zone
is utilized as a physical and compositional weak
zone that helps to accommodate a second axis of
break-up (Fig. 5).

Plate tectonic reorganizations and the rejuvena-
tion of pre-existing structures may not be the only
controls on continental break-up, but they may be
the dominant controls in the case of the JMMC. In
areas where no microplate formation is observed,
continental break-up followed the youngest, weakest
Caledonian collision zone, the west-dipping Scan-
dian subduction in Scandinavia. This may have
been better aligned with the ambient stress field dur-
ing rifting and/or break-up. Following the model of
Petersen & Schiffer (2016), the remnants of this sub-
duction zone or other inherited orogenic structures
may now be distributed along the mid-Norwegian
margin as pre-break-up HVLCBs (Christiansson
et al. 2000; Gernigon et al. 2006; Fichler et al.
2011; Wangen et al. 2011; Mjelde et al. 2013, 2016;
Nirrengarten et al. 2014). The subduction zone was
already deformed in the Norwegian North Sea by
rifting subsequent to the Permo-Triassic and is still
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Fig. 5. Application of the model of Whittaker et al. (2016) to the formation of the Jan Mayen microplate complex.
The original model was developed to explain microcontinent separation between Greater India and Australia. (a)
NW–SE plate motion between Greenland and Europe with the Iceland–Faroe accommodation zone as a diffuse zone
accommodating relative motion between the Reykjanes Ridge and Aegir Ridge. Continental rifting and extension
occurs along the lithospheric weakness (East Greenland fossil subduction zone). (b) Plate tectonic reorganizations
result in west–east motion between Greenland and Europe, locking up the Iceland–Faroe accommodation zone. The
Reykjanes Ridge diverts towards the north following the lithospheric weakness. (c) Seafloor spreading develops along
the Kolbeinsey Ridge, breaking the Jan Mayen microplate off from Greenland. The JMMC rotates counter-clockwise.
Seafloor spreading on the Aegir Ridge is abandoned. AR, Aegir Ridge; IFAZ, Iceland–Faroe accommodation zone;
KR, Kolbeinsey Ridge; RR, Reykjanes Ridge.
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preserved as a large HVLCB beneath the North Sea
rift (Christiansson et al. 2000; Fichler et al. 2011). A
stronger, east-dipping subduction zone in East
Greenland may also have been deformed, but did
not accommodate break-up. Continental rifting and
possible overlapping of the Reykjanes and Mohns
ridge, leading to the initiation of the formation of
the JMMC (Gernigon et al. 2012, 2015), may have
been promoted by the presence of this deep-rooted
weak zone.

The Caledonian and Grenvillian orogenic fabric
and major associated structures are generally parallel
to the NNE–SSE trend of rifting in the North Atlan-
tic, with some exceptions, such as the opening of the
Labrador Sea. Older terrane boundaries are close to
perpendicular. Young Caledonian structures define
the axis of rifting and continental break-up. This
can be explained by the presence of deep, weak eclo-
gite facies roots along the axis of the Caledonian
Orogen and extensional collapse of the Caledonian
mountain range causing earlier extension to initiate
perpendicular to the axis of collision (Ryan &
Dewey 1997; Rey et al. 2001). Precambrian struc-
tures are still preserved in stable cratons surrounded
by orogens and mobile belts. Once rifting occurs, lat-
eral weaknesses and rheological boundaries control
the segmentation of the rift axis and eventually influ-
ence the formation of across-strike deformation
zones of different kinds, e.g. fracture and transform
zones and diffuse/oblique/transtensional rift and
ridge systems.

Our suggested scenario for the formation of the
JMMC complements the established Wilson cycle
concept. We propose that reactivation and the petro-
logical variation of inherited structures of different
ages, coupled with changes in the regional/global
stress regime, controlled microplate formation in the
following sequence of events (see also Fig. 6).

(1) Early Paleocene. Rifting propagates from
the Central Atlantic into the Labrador Sea–
Baffin Bay rift system (Roest & Srivastava
1989; Chalmers & Pulvertaft 2001; Peace
et al. 2016)

(2) Early Eocene (Fig. 6b). Change in the Labra-
dor Sea–Baffin Bay spreading direction from
NW–SE to west–east (Abdelmalak et al.
2012) and the onset of seafloor spreading in
the NE Atlantic (Gaina et al. 2009). This was
possibly related to the far-field stress field
applied by the collision of Africa and Europe
(Nielsen et al. 2007) and/or to the relocation
of the postulated Iceland plume (Skogseid
et al. 2000; Nielsen et al. 2002).

(3) The NW–SE stress field in the North Atlantic
between Greenland and Scandinavia would
have favoured deformation on deep structures
associated with the Iapetus Suture on the

Norwegian margin rather than the East Green-
land margin with the proposed fossil subduc-
tion zone (Fig. 2). Thus initial break-up is
generally parallel to and in the vicinity of the
Iapetus Suture.

(4) The IFAZ forms as the southern limit of the
JMMC and may be linked to the localization
of strain along the proposed fossil subduction
zone or other potential rheological boundaries.
No continental break-up occurred between Ice-
land and the Faroe Islands (IFR), with underly-
ing uninterrupted, but thinned, continental
lithosphere (Ellis & Stoker 2014).

(5) Mid-late Eocene. Accelerated extension
occurred in the southern part of the JMMC
and local reorganization of the Norway Basin
spreading system (Gernigon et al. 2012,
2015) developed around 47 Ma (Fig. 6c) A
first phase of magmatism between Greenland
and the proto-JMMC was initiated (Tegner
et al. 2008; Larsen et al. 2014). In the southern
JMMC, isolated spreading cells possibly
developed before the steady-state development
of the Kolbeinsey Ridge.

(6) Late Eocene–early Oligocene (Fig. 6c). A
major plate tectonic reorganization, including
a change from NW–SE to NE–SW plate
motion, coincident with the abandonment of
seafloor spreading along the Labrador Sea–
Baffin Bay system and consequent end of the
anticlockwise rotation of Greenland (Mosar
et al. 2002; Gaina et al. 2009; Oakey &
Chalmers 2012). This change in plate motion
resulted in deformation along the fracture
zones and transpression on the IFAZ.

(7) Locking of the IFAZ triggered continental
break-up between Greenland and the proto-
JMMC subsequent to continental rifting
between them. This is consistent with the
microplate model of Whittaker et al. (2016) for
the Indian Ocean. Rotational rifting between
Greenland and the proto-JMMC started much
earlier (c. 48–47 Ma) than the abandonment
of the Labrador Sea–Baffin Bay spreading sys-
tem (c. 40 Ma) and break-up between Green-
land and the JMMC (33–24 Ma).

(8) Ultra-slow spreading continued on the Aegir
Ridge after c. 31 Ma (Mosar et al. 2002;
Gaina et al. 2009; Gernigon et al. 2015),
while drastic rifting and possible embryonic
spreading developed south of the proto-JMMC
until steady-state spreading along the Kolbein-
sey Ridge was completely established at
24 Ma (Vogt et al. 1970; Doré et al. 2008; Ger-
nigon et al. 2012).

(9) The Aegir Ridge was abandoned, with all
plate motion accommodated by the Kolbeinsey
Ridge after 24 Ma, separating the proto-JMMC
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from East Greenland (Fig. 6d). The West
JMFZ, the eastern branch of which had already
been established during the opening of the

Norway Basin, then connected the Kolbeinsey
Ridge with the Mohns Ridge north of the
JMMC.

Fig. 6. Separation of the Jan Mayen microplate complex from Greenland. Palaeogeographic reconstructions from
Seton et al. (2012). 100 Ma: the Caledonian Orogen experienced extensional collapse and multiple rift phases. Fossil
subduction zones are still preserved, although possibly deformed. 50 Ma: seafloor spreading in the North Atlantic
separates Greenland from Europe with NW–SE plate motions; break-up in the NE Atlantic occurs along the Iapetus
Suture, which deforms. 40 Ma: plate motions change from NW–SE to west–east, which causes transpression on the
Iceland–Faroe accommodation zone. The Reykjanes Ridge spreading centre develops towards the north, following
lithospheric weaknesses along the East Greenland fossil subduction zone. 20 Ma: the newly formed Kolbeinsey Ridge
is almost entirely developed, separating the Jan Mayen microplate complex from Greenland. The fossil subduction
zone in Central East Greenland is highly deformed, whereas it is mainly preserved further north. The Aegir Ridge is
successively abandoned. 0 Ma: fossil subduction zones are still preserved in East Greenland, northern Scotland and
the Danish North Sea sector (CF, Central Fjord structure; FL, Flannan structure; ML, Mona Lisa structure). The fossil
subduction zone has been destroyed and deformed in Norway and south-central East Greenland. It now forms high
seismic velocity lower crustal bodies that are possibly eclogite high-velocity, lower crustal bodies (mapped in
magenta and orange). HVLCB, high-velocity, lower crustal body; IFAZ, Iceland–Faroe accommodation zone; JMMC,
Jan Mayen microplate complex.
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Summary

We propose a new model for the formation of a
microplate complex as an extension to the estab-
lishedWilson cycle concept. The newmodel invokes
the rejuvenation of major pre-existing structures by
plate-driven processes controlling both continental
break-up and the formation of the JMMC.

The initial axis of continental break-up exploited
the lithospheric weaknesses associated with the Iape-
tus Suture (Fig. 6a, b). These structures were par-
ticularly susceptible to deformation due to their
preferential orientation with respect to the NW–SE
to west–east-oriented extensional stress field. Frac-
ture zones and strike-slip/oblique zones of deforma-
tion delineate the later-forming JMMC. The IFAZ
represents one of these zones and may have formed
along an old subduction zone. The origin of the
IFAZ remains poorly defined because of poor data
coverage. However, it is likely that, despite extreme
thinning of the continental lithosphere, no continen-
tal break-up occurred between the present day
JMMC and the Faroe Islands (e.g. Gernigon et al.
2015; Blischke et al. 2017).

Our model predicts that, following a major
change in the direction of extension coeval with
the abandonment of the Labrador Sea–Baffin Bay
oceanic spreading and transform system, oblique
deformation occurred south of the proto-JMMC
and along the poorly defined IFAZ (Fig. 6c). This
caused further westward relocation of the spreading
centre towards a fossil subduction zone where eclo-
gite and, especially, weak inherited serpentinite
accommodated the relocation and final development
of the Kolbeinsey Ridge. Complete development of
the Kolbeinsey Ridge resulted in the final separation
of the proto-JMMC from East Greenland (Fig. 6d)
and complete break-up of the North Atlantic.

Formation of the JMMC correlates with, and can
be explained by, the rejuvenation of pre-existing
structures of different ages. Oblique accommoda-
tion/deformation zones, including fracture zones,
defined the extent of the JMMC along the spreading
axis. This model provides a simple explanation for
the formation of a microplate complex involving
control by both plate tectonic processes and struc-
tural inheritance.

Further work and data acquisition are required to
fully understand the nature and formation of the
JMMC, Iceland and the IFR. All three components
are intrinsically interlinked and essential in under-
standing the tectonic and magmatic evolution of
the entire North Atlantic. Geophysical data are lack-
ing, especially in the south of the JMMC, offshore
NW Iceland, and between Iceland and the Faroe
Islands. The most fundamental, and perhaps eco-
nomically important, question is the extent of conti-
nental crust underlying this region, a question that

may require additional marine surveys, the
re-interpretation of geochemical data and further
drilling and sampling in this area.
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