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Time-dependent seismic tomography
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S U M M A R Y
Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic
tomography is among those that offer the highest spatial resolution. 3-D tomographic methods
are commonly applied in this context by inverting seismic wave arrival time data sets from
different epochs independently and assuming that differences in the derived structures represent
real temporal variations. This assumption is dangerous because the results of independent
inversions would differ even if the structure in the Earth did not change, due to observational
errors and differences in the seismic ray distributions. The latter effect may be especially
severe when data sets include earthquake swarms or aftershock sequences, and may produce
the appearance of correlation between structural changes and seismicity when the wave speeds
are actually temporally invariant. A better approach, which makes it possible to assess what
changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing
the difference between models for different epochs as well as the rms arrival-time residuals.
This problem leads, in the case of two epochs, to a system of normal equations whose order is
twice as great as for a single epoch. The direct solution of this system would require twice as
much memory and four times as much computational effort as would independent inversions.
We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of
the system to obtain the solution with essentially no more effort than independent inversions
require.

Key words: Inverse theory; Hydrothermal systems; Seismic tomography; Crustal structure;
Volcano monitoring.

1 I N T RO D U C T I O N

A variety of natural and anthropogenic processes can cause the seis-
mic wave speeds in the Earth to vary with time. Since the late 1960s,
temporal changes in wave speeds have been detected in many geo-
logical environments and attributed to a variety of causes, including
tidal strains (De Fazio et al. 1973), seasonal variations in ground-
water hydrology (Sens-Schönfelder & Wegler 2006), tectonic stress
build up (Furumoto et al. 2001), static stress changes caused by
earthquakes, dynamic shaking caused by earthquakes, (Rubinstein
& Beroza 2004, 2005; Peng & Ben-Zion 2006; Sawazaki et al.
2006; Wu et al. 2009) damage to rocks caused directly by faulting
(Li et al. 2007), stress changes caused by deformation around vol-
canoes (Ratdomopurbo & Poupinet 1995; Nishimura et al. 2000),
migration of magmatic fluids accompanying volcanic activity (Foul-
ger et al. 2003; Patane et al. 2006), dilatancy and fluid migration
before earthquakes (Aggarwal et al. 1973), drying of clay min-
erals caused by geothermal exploitation (Boitnott & Boyd 1996),
CO2 flooding of hydrocarbon reservoirs (Wang et al. 1998; Daley
et al. 2007), and pore-pressure decreases in exploited geothermal
reservoirs (Julian et al. 1998; Gunasekera et al. 2003). Such obser-
vations of temporal variations of wave speeds have important appli-
cations to fields such as earthquake prediction, volcano monitoring

(Foulger 2006), geothermal-reservoir exploitation, oil and gas reser-
voir assessment, and CO2 sequestration.

Technical advances, particularly the increasing spatial density of
seismometer networks and the transition from analogue to digital
recording, have made available a broad range of analysis techniques
and have increased by more than an order of magnitude the sensi-
tivity with which wave-speed changes can be detected. These meth-
ods include using fixed vibrator and explosion sources (Clymer &
McEvilly 1981), measuring the time differences between the two
quasi-shear waves (‘split shear waves’) that result from propagation
through anisotropic media (Crampin et al. 1990), and comparison of
scattered waves in the codas of repeating local earthquakes having
similar locations and mechanisms (e.g. Schaff & Beroza 2004; Taira
et al. 2008; Zhao & Peng 2009). Most of the available techniques,
however, have limited spatial resolution. The only technique that
offers high spatial resolution is local-source seismic tomography.

Tomographic investigations of temporal changes in Earth struc-
ture have until now been conducted using conventional tomogra-
phy programs such as those of the SIMUL family (Thurber 1993;
Evans et al. 1994) to invert seismic-wave arrival time data sets
for different epochs separately, assuming that differences in the re-
sulting models arise from real temporal variations. Foulger et al.
(1997), for example, using this method found decreases of about
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Figure 1. Map of the Coso geothermal area, eastern California, which is used as the basis for the synthetic data sets inverted in Section 3. Green squares:
Stations of the U. S. Navy’s permanent telemetered seismometer network. The tomographic grid has nodes spaced by 2 km horizontally and 1 km vertically,
and is geometrically congruent with the grids used in Figs 3–11.

4 per cent in the ratio VP/VS between 1991 and 1994 at The Geysers
geothermal reservoir in northern California, and Gunasekera et al.
(2003) confirmed the change by studying data from 1993, 1996 and
1998, and showed that the change was caused primarily by a de-
crease in VP , an expected consequence of an increase in pore-fluid
compressibility caused by decreasing pressure in the reservoir. Us-
ing the same method, Patane et al. (2006) found that in certain places
at Mt Etna, VP/VS increased by about 4.5 per cent at the time of
the 2002–2003 eruption. The assumption that differences in the
results of independent tomographic inversions represent true tem-
poral variations is questionable, however, because the results of
repeated tomography experiments would differ even if the structure
did not change, because of variations in the seismic ray distribu-
tions caused by natural variation in earthquake locations. Even if
the source locations did not change (if explosion data were used,
for example) and the seismometer distribution were held fixed, dif-
ferences in the derived models would be expected because of ran-
dom observational errors. The reality of the temporal changes men-
tioned above is not subject to serious doubt, because of their large
magnitude and their correlation with likely causes in the forms
of intensive geothermal exploitation and volcanic activity, but
some weaker reported changes presently remain open to ques-
tion. Among these are possible changes between 1989 and 1997
in VP/VS associated with CO2 emissions at Mammoth Moun-
tain in Long Valley caldera, California (Foulger et al. 2003) and

Figure 2. The depth-dependent distribution of the compressional-wave
speed VP that is used as the deterministic component of the pseudo-random
models for which theoretical data are computed and inverted in Section 3.
The increase of VP with depth is based on the layered model used rou-
tinely by the U.S. Navy to locate earthquakes at the Coso geothermal area,
California.
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possible recent changes at the Coso geothermal area, California.
Some studies, such as that by Foulger et al. (2003) of Long Valley
caldera, have attempted to deal with this sampling problem by per-
forming a series of inversions, alternating between two epochs and
using the model derived in each inversion as the starting model in
the next inversion of data from the other epoch, but this procedure

Figure 3. Maps showing spatial variations in the compressional wave speed
VP at different depths in the random time-independent model for which theo-
retical travel times are inverted in Section 3.1. The deterministic component
of the model is the depth-dependent function shown in Fig. 2. The covariance
matrix of the random component of VP is given by eq. (1) with a standard
deviation σv = 0.1 km s−1 and correlation distances ax = ay = 2 km and
az = 1 km. The grid nodes are spaced 2 km apart horizontally and 1 km
apart vertically. The values shown are percent deviations from the mean at
each depth.

is awkward and time-consuming, and furthermore offers no help in
distinguishing between true temporal variations and the effects of
random observational errors.

2 M E T H O D

We propose an alternative approach, which makes it possible to
determine what changes are truly required by the data, namely to
invert multiple data sets simultaneously, seeking to minimize the
difference between the models for different epochs as well as the
misfit between the observed and predicted arrival times. This prob-
lem is similar to that of seeking models consistent with an a priori
assumed model, and Appendix A shows how it can be solved us-
ing a technique similar to the ‘damped least squares’ method of
Marquardt (1963). Solving for two models simultaneously requires
the determination of twice as many parameter values as solving
for a single model does, and the most straightforward solution
method would require substantially more than twice the computa-
tional labour. Solving the problem by means of a system of ‘normal
equations’ (Whittaker & Robinson 1967, section 108), for example,
requires eight times as much labour as solving for a single epoch,
and thus quadruples the labour compared to solving for two epochs
independently. In most cases the system of normal equations for the
two-epoch problem is sparse, however, and Appendix A presents a
method (Algorithm 1) that takes advantage of this fact to solve the
equations with little more labour than is needed to solve for each
epoch independently.

Section 3 below shows results of inverting synthetic data
sets using tomo4d, a local-earthquake tomography computer pro-
gram that uses the methods presented in Appendix A, including
Algorithm 1, to invert arrival-time measurements from two epochs
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Figure 4. Surface projections of ray paths (represented as straight lines) for
a sparse pseudo-random theoretical arrival-time data set of the kind inverted
in Section 3.1.1, intended to represent spatially uniform background seismic-
ity. In this example, rays connect each of 100 pseudo-random hypocenter
locations with the 13 seismometer locations of the permanent U.S. Navy
seismometer network at the Coso geothermal area, shown in Fig. 1. The
earthquake hypocenter locations have a uniform probability distribution
over the 10 km × 10 km × 10 km volume.
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Figure 5. Maps for different depths showing the results (a and b) of
independent inversions of a pair of theoretical arrival-time data sets in-
tended to represent spatially uniform background seismicity, as described in
Section 3.1.1 The data sets have a sparse statistically uniform seismicity
distribution like that shown in Fig. 4 (100 events and 1300 rays per data set).
The models exhibit differences because of different spatial sampling of the
3-D structure, which could be mistaken for temporal variations.

to estimate the hypocenter locations and the wave-speed changes
between epochs. It uses the azimuthal-equidistant Earth-flattening
approximation (Julian et al. 2000) to map a small region of a
spherical Earth into a local Cartesian coordinate system. Many
programs in common use simply identify longitude and latitude
with local Cartesian coordinates x and y, an approximation that
is seriously inaccurate at high latitudes or for large regions. The

Figure 5. (Continued.)

Earth-flattening method used in tomo4d is invariant with respect
to geographic location and is accurate over much larger regions.
Models are specified by the values of seismic wave slowness (in-
verse of wave speed) at the nodes of a rectilinear grid, with 3-D
tricubic interpolation (Press et al. 2007, Section 3.6) used to com-
pute slowness values and their spatial derivatives elsewhere. The
interpolated wave slownesses (and the wave speeds) are smooth,
that is, they are continuous and have continuous first spatial deriva-
tives. Ray paths are computed using the bending method of Julian
& Gubbins (1977). The problems of simultaneously determining
hypocenter locations and Earth structure are separated using the
method of Spencer & Gubbins (1980), which requires the solution
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Figure 6. Maps like those of Fig. 5 showing the results of inverting the
same theoretical data sets, but imposing a weak constraint to minimize dif-
ferences that are not truly required by the data, as described in Section 3.1.1
Artificial differences between the results for different epochs are practically
eliminated.

of only P × P and 4 × 4 linear systems, where P is the number of
adjustable parameters in the model, and is much more efficient than
solving the much larger unseparated system of equations.

3 T E S T S W I T H S Y N T H E T I C DATA

To test and illustrate the behaviour of this method, we compute theo-
retical arrival-time data sets for pseudo-random local Earth models

Figure 6. (Continued.)

and hypocenter locations and an actual seismometer distribution
(Fig. 1), and invert these data sets both independently and using
Algorithm 1 of Appendix A. In these models, the seismic wave
speeds at the grid nodes are pseudo-random normal deviates com-
puted using the method in section 7.4 of Press et al. (2007), having
mean values (‘deterministic components’) that may be specified in
any desired manner (here, they are purely depth-dependent, and are
shown in Fig. 2) and covariances given by Gaussian functions of
the form

�i j = σ 2
V exp

(
−

[
(xi − x j )2

a2
x

+ (yi − y j )2

a2
y

+ (zi − z j )2

a2
z

])
.

(1)
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Here (xi , yi , zi ) are the Cartesian coordinates of the ith grid node,
σV is the standard deviation of the random variations, and ax , ay

and az are correlation distances in the x, y and z directions.
We perform this exercise using both time-independent and tempo-

rally varying earth models and different sets of assumed earthquake
locations, which give both dense and sparse distributions of rays
and both random and systematic differences in their sampling of
the structure with time.

3.1 Apparent temporal variations caused by changes
in ray distribution

Because of natural changes in the locations of earthquakes, re-
peated tomographic inversions would be expected to give differ-
ent results even if the wave speed in the Earth did not vary with
time. To investigate this phenomenon, we invert theoretical P-wave
arrival-time data sets generated by tracing rays through the pseudo-
random model shown in Fig. 3. We investigate two types of situation.
Statistically uniform spatial distributions of earthquakes, such as
might represent natural background seismicity, and strongly clus-
tered earthquakes, such as might occur in an earthquake swarm
or aftershock sequence. In all cases we use a real (non-random)
distribution of seismometers, namely the innermost 13 stations of
the U.S. Navy’s permanent network at the Coso geothermal area,
California (see Fig. 1).

In order to reduce potentially complicating effects, we made
several simplifications of reality. We inverted exact theoretical ar-
rival times, without attempting to simulate observational errors,
and we did not attempt to solve for hypocenter locations, but rather
used the true locations as inputs to the inversion process. In reality,
observational errors and uncertainty about hypocentral locations
would complicate the task of identifying artefacts such as spuri-
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Figure 7. Surface projections of computed ray paths (represented as straight
lines) for a pseudo-random theoretical arrival-time data set of the kind
inverted in Section 3.1.2, intended to represent data from an earthquake
swarm or aftershock sequence. Rays connect each of 100 pseudo-random
hypocenter locations, uniformly distributed in a 2 km × 2 km × 2 km cube
centered at x = y = z = 5 km, to each seismometer.

Figure 8. Maps for different depths showing the results of independent
inversions of a pair of theoretical arrival-time data sets intended to represent
the onset of an earthquake swarm or aftershock sequence, as described
in Section 3.1.2 (a) The result derived from the earthquake distribution
shown in Fig. 4, representing pre-main shock background seismicity; (b) the
result derived from the earthquake distribution shown in Fig. 7, representing
localized swarm seismicity. The systematic difference in the sampling of
the structure by the two ray distributions produces strong differences in the
results, especially in the seismically active volume, which could easily be
mistaken for temporal variations in the wave speed.

ous temporal variations in wave speeds. We inverted theoretical
arrival times for seismic P phases only, and thus solved for only the
compressional-wave speed VP . In reality, the shear wave speed VS

is of great intrinsic interest, and S-phase times are particularly valu-
able for constraining hypocentral locations. To minimize non-linear
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Figure 8. (Continued.)

effects, we used a pseudo-random model (Fig. 3) with compar-
atively weak lateral variations in wave speed (about 2 per cent)
and performed only a single tomographic iteration. This restriction,
combined with the use of step-size damping, means that our derived
models resolve only the strongest of the pseudo-random variations.

3.1.1 Random variations in ray distribution

Fig. 4 shows an example of ray paths for a sparse, statistically
uniform distribution of random hypocenter locations intended to
represent unclustered background seismicity. We inverted pairs of
theoretical data sets computed for such random rays using two
approaches: independent inversions and joint inversions using the

Figure 9. Maps like those of Fig. 8 showing results obtained by inverting
the same theoretical data sets, but imposing a weak constraint to minimize
differences that are not truly required by the data. Because of the highly
non-uniform ray distribution, the results differ significantly from ones such
as those shown in Fig. 6, but the spurious temporal variations that dominated
Fig. 8 have almost completely disappeared.

method of Appendix A to suppress differences between derived
models that are not actually required by the data.

Fig. 5 shows the results of inverting a pair of data sets indepen-
dently, and Fig. 6 shows the results of inverting them jointly using
tomo4d. All these results exhibit several large-scale anomalies, most
of which correspond well to features in the pseudo-random model
used to generate the theoretical data (Fig. 3), although the inevitable
undersampling of the structure by rays causes many other features
of the models not to be imaged well. The results for the different
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Figure 9. (Continued.)

epochs, though, have many features that differ significantly. When
a mild constraint is applied to suppress differences not required by
the data, all these artificial temporal changes disappear (Fig. 6).

3.1.2 Systematic aftershock-like variations in ray distribution

In reality, temporal changes in earthquake locations are often more
systematic than those considered in Section 3.1.1 An extreme but
important example is afforded by earthquake swarms and after-
shock sequences, which often produce tens of thousands of arrival-
time data densely sampling a volume that previously was sampled
sparsely or not at all.

Figure 10. Maps showing wave speeds obtained by independently inverting
synthetic data sets computed for a weak, localized temporal change in wave
speed. The model in (a) is derived from the same data set as that used for
Figs 5(a) and 8(a). That in (b) is based on the same pseudo-random set of
hypocenters as Fig. 5(b) and a model with a −0.1 km s−1 VP anomaly from
sea level to 1 km below sea level, north coordinate from 6 to 8 km, and
east coordinate from 2 to 4 km. The artificial apparent temporal changes
completely obscure all evidence of the true change.

Fig. 7 shows the ray distribution for 100 pseudo-random
hypocenters intended to mimic such an earthquake sequence. The
hypocenters are distributed with uniform probability density
throughout a 2 km × 2 km × 2 km cube located in the centre
of the region. This ray distribution is quite different from ones like
that shown in Fig. 4, and it samples the structure poorly. Inverting
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Figure 10. (Continued.)

theoretical data from it produces models with significant structural
features concentrated mainly near the region of seismicity (Fig. 8b).
Such models differ greatly from ones obtained from inverting a more
uniform (e.g. pre-main shock) seismicity distribution (Fig. 8a) and
such differences might well be mistaken for real temporal variations
related to the earthquake-generation process.

Jointly inverting such an aftershock-like data set and one with
uniformly distributed rays, however, eliminates the misleading ap-
parent temporal change (Fig. 9). The strong concentration of rays
in the neighbourhood of the aftershocks strongly biases the derived
models (compare Fig. 9 with Fig. 6, for example), but it does not
produce spurious temporal variations in wave speed.

Figure 11. Maps showing wave speeds in models obtained by inverting the
same data sets as in Fig. 10, but using the tomo4d algorithm to suppress
artificial apparent temporal changes. The change in wave speed near sea
level in the northwest, which involves values at the eight nodes shown as
white dots, is now clear.

3.2 True temporal variations in wave speeds

To demonstrate that the tomo4d algorithm not only suppresses arti-
ficial temporal variations in seismic-wave speed but also can reveal
true temporal variations, we conducted inversions like those de-
scribed in Section 3.1.1, but using synthetic data generated using
models that vary slightly between epochs. We use uniform ‘back-
ground seismicity’ distributions like the example shown in Fig. 4.
The structure for the first epoch is the same as the one used in all
the previous examples, but for the second epoch we introduce a
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Figure 11. (Continued.)

0.1 km s−1 negative VP anomaly in a 2×2×1 km region just below
sea level in the northwestern part of the model.

Fig. 10 shows the results of independent inversions. As in the
case shown in Fig. 5, the difference in the sampling of the structure
provided by the two pseudo-random hypocenter distributions pro-
duces differences between the derived structures that completely
obscure the temporal change in the northwest. Fig. 11 shows the
results of applying the tomo4d algorithm. The results for the two
epochs are now quite similar except in the shallow volume in the
northwest, where the negative VP anomaly that we introduced for
the second epoch is clearly detectable. Because of the inevitably im-
perfect sampling of the structure by the rays, the anomaly is smeared

vertically, and is visually detectable on Fig. 11 from the surface to
depths of about 2 km below sea level.

Of course, seismic tomography is a non-linear inverse problem,
because of the dependence of the seismic ray paths on the 3-D wave
speed structure that is being sought. The only practical solution
methods, including the variant described here, involve iterative re-
finement of initial estimated models, which might sometimes not
converge or might converge to different solutions depending on the
initial model chosen.

4 C O N C LU S I O N S

Repeat seismic tomography has the potential to detect and resolve
spatially temporal changes in the seismic wave speeds in the Earth,
but it is subject to bias caused by temporal variations in ray paths
caused by changes in earthquake locations or seismometer-network
geometry, and also by random observational errors in measured ar-
rival times. These effects can produce spurious and potentially mis-
leading apparent temporal changes in derived tomographic models.
Artefacts of this kind can be eliminated by inverting data sets from
multiple epochs simultaneously, imposing constraints to minimize
interepoch differences between models, as described in Appendix
A. Direct application of this method requires solution of a large
system of linear equations, which is expensive in terms of both
storage requirements and numerical labour. The particular structure
of the equations, however, and their sparseness, make it possible to
simultaneously invert data from two epochs with about the same
storage requirements and computational effort as inverting the data
sets independently. The algorithm for doing this (Algorithm 1, Ap-
pendix A) is equally applicable to any linear or linearized inverse
problem, such as gravity, electrical, or magnetotelluric interpreta-
tion, in addition to seismic tomography.
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A P P E N D I X A : I N D I R E C T
M E A S U R E M E N T O F S E C U L A R
C H A N G E S

Suppose seismological or other indirect measurements of Earth
structure are made at two epochs and we wish to estimate what
changes, if any, have occurred during the intervening period. Be-
cause of uncontrollable factors, the two data sets do not correspond
exactly to each other. The numbers of data in the sets are not likely
to be the same, the earthquakes are generally not in the same places,
and the numbers, locations, and characteristics of the seismometers
may differ. Even if the two data sets do not differ in these respects
(if timed explosion sources are used, for example), inverting them
is expected to give somewhat different results because of random
measurement errors. We seek an inversion method that will distin-
guish between such sampling fluctuations and true changes in Earth
structure.

A1 Conventional least-squares method

Let the Earth model at an epoch be described by n parameters
arranged in a column vector, let the model vectors for the two epochs
be x and y, and let the observed arrival-time residuals (observed
minus predicted times) similarly be arranged in column vectors b
and d, of dimensions mb and md . The functional relation between a
model and the corresponding predicted arrival times is non-linear,
because of the dependence of the ray paths on the model, and
the only currently practical solution method consists of iteratively
solving a linearized problem in which small changes in the models,
δx and δy, are related to predicted changes δb and δd in the residuals
by linear operators (the first terms of Taylor-series expansions).
These operators take the form of matrices A and C, of dimensions
mb × n and md × n, such that, to first order, predicted changes in
the residual vectors are given by the ‘design equations’

δb = −Aδx and δd = −Cδy. (A1)

The conventional least-squares method [e.g. Whittaker &
Robinson (1967), chapter IX] seeks at each iteration to optimize
the fit between the predicted and observed arrival times by mini-
mizing the ‘objective function’

χ 2 def= (Aδx − b)T S−1
b (Aδx − b)+

(Cδy − d)T S−1
d (Cδy − d), (A2)
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where the superscript T indicates matrix transposition and Sb
def=

E[bbT ] and Sd
def= E[ddT ] are the symmetric mb ×mb and md ×md

covariance matrices of the observational errors for the two data
sets. The two terms on the right-hand side of eq. (A2) are the sums
of the squares of the variance-normalized data residuals for the
two epochs. In most cases, the errors in different observations are
statistically independent and the covariance matrices Sb and Sd are
diagonal, the diagonal elements being the squares of the standard
errors of the observations, or equivalently the inverses of the weights
to be given to the observations.

The solution to this minimization problem is found by differen-
tiating χ 2 with respect to each of the components of δx and δy and
setting the resulting expressions to zero. In this simple case, the
problems for the two epochs are independent and we obtain two
independent n × n systems of linear ‘normal’ equations,

AT S−1
b Aδx = AT S−1

b b and CT S−1
d Cδy = CT S−1

d d, (A3)

to solve for δx and δy.

A2 Regularization

In most least-squares problems (and virtually all seismic-
tomography problems) the design-equation matrices A and C have
ranks less than n, because of inadequate sampling of the Earth by
the available rays, and consequently the normal-equation matrices
AT S−1

b A and CT S−1
d C are singular, so additional information must

be supplied to ‘regularize’ the problem. This is conventionally done
by using the modified objective function

χ 2 + α
(
δxT Q−1

x δx + δyT Q−1
y δy

)
. (A4)

Here α is a Lagrange multiplier and Qx
def= E[δxδxT ] and Qy

def=
E[δyδyT ] are n × n a priori covariance matrices of the perturba-
tions to the models. The modified objective function (A4) leads to
modified normal equations(
AT S−1

b A + αQ−1
x

)
δx = AT S−1

b b and (A5)

(
CT S−1

d C + αQ−1
y

)
δy = CTS−1

d d.

The simplest useful form for Qx and Qy is the n × n identity
matrix I, for which choice

δxT Q−1
x δx ≡ δx2 and δyT Q−1

y δy ≡ δy2. (A6)

and the regularization attempts to make the model perturbations δx
and δy small. This ‘damped least-squares’ method, introduced by
Marquardt (1963), requires simply adding the constant α to each
diagonal element of the simple normal-equation matrix (A3). Other
useful choices for Q can impose constraints on other characteristics,
such as the smoothness, of the model perturbations.

A3 Differential least-squares method

We wish to invert data sets for two epochs simultaneously, in a
way that suppresses any tendency of the derived models for the two
epochs to differ unless doing so significantly improves the fit to the
data. We therefore modify the objective function (A4) still further

and seek to minimize the quantity

χ 2 + α(δxT Q−1
x δx + δyT Q−1

y δy)

+ β(δy − δx)T R−1(δy − δx), (A7)

where β is a new Lagrange multiplier and R is a new n × n a priori
covariance matrix.

Differentiating the quantity (A7) with respect to the components
of δx and δy and setting the resulting derivatives to zero, we obtain
a 2n × 2n system of normal equations, which can be written in
partitioned form as[

E + βR−1 −βR−1

−βR−1 G + βR−1

][
δx

δy

]
=

[
f

h

]
, (A8)

where E
def= AT S−1

b A +αQ−1
x , G

def= CT S−1
d C + αQ−1

y , f
def=

AT S−1
b b and h

def= CT S−1
d d are shorthand notations for quantities

appearing in the regularized normal eq. (A5).
As before, the simplest useful choice for R is the n × n identity

matrix, in which case

(δy − δx)T R−1(δy − δx) = (δy − δx)2, (A9)

and we seek to minimize the sum of the squares of the element-by-
element differences of the vectors δx and δy.

Most useful choices of the covariance matrix R consist mostly
of zeros, and dealing with the full 2n × 2n system (A8) is wasteful
of computer memory and processor time. When R is diagonal the
storage inefficiency is nearly a factor of two and the computational
inefficiency is nearly a factor of four. (This statement refers to the
task of solving the equations only. Generating the equations in the
first place is often more time consuming.) It is possible, however,
to solve the system of eq. (A8) for δx and δy with little more labour
than it takes to solve two independent sets of normal equations
separately, by the following algorithm:

Algorithm 1.

(1) Invert the n × n matrix G′ def= G + βR−1 and compute the
n-vector G′−1

h.
(2) Solve the n × n system(

E′ − β2R−1G′−1
R−1

)
δx = f + βR−1G′−1

h (A10)

for δx, where E′ def= E + βR−1.
(3) Compute δy = G′−1 (

h + βR−1δx
)
.

Step 3 follows from the bottom half of the system of normal eq. (A8).
Steps 1 and 2 follow from the top half of the inverse of the system
(A8),[

δx

δy

]
=

[
E′′−1

βE′′−1
R−1G′−1

βG′′−1
R−1E′−1

G′′−1

] [
f

h

]
, (A11)

whose validity can be verified directly by substitution. Here we have
introduced the shorthand symbols

E′′ def= E′ − β2R−1G′−1
R−1 and (A12)

G′′ def= G′ − β2R−1E′−1R−1.

Steps 1 and 2 each require the inversion of an n × n system, while
step 3 requires only a matrix-vector multiplication, so the total
computational labour is comparable to solving two independent
n × n systems.

This algorithm is implemented in the C-language code tomo4d.
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